Citation: LV Yong-Gang, LI Zhi-Jun, WU Li-Zhu, WANG Peng, FU Li-Min, ZHANG Jian-Ping. Application of Time-Resolved Coherent Anti-Stokes Raman Scattering Technique on the Study of Photocatalytic Hydrogen Production Kinetics[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1632-1638. doi: 10.3866/PKU.WHXB201304281
-
Based on the laser pulse output from a femtosecond regenerative amplifier and optical parametric amplifier (OPA), a broadband time-resolved coherent anti-Stokes Raman scattering (CARS) setup was assembled. Using this setup, the relationship of hydrogen CARS spectra to its amount in a mixture with air and the relevant detection time-delay were studied. Hydrogen CARS spectra without nonresonant background interference were obtained by adjusting the detection time-delay. The observed CARS intensity exhibited a linear relationship with the square of hydrogen concentration, which is consistent with the theoretical prediction. The signal-to-noise ratio showed that when the pressure of hydrogen-air mixed gas was 0.1 MPa, the detection limit of our setup was less than 0.2%. Using this setup, the hydrogen production kinetics of a platinum(II) terpyridyl acetylide molecular-cobalt catalysttriethanolamine (TEOA) system was studied. The kinetic mechanism of hydrogen production was discussed by considering the effect of changing pH. The results indicate that a high proton concentration will reduce the hydrogen production efficiency. This can be attributed to the inhibition of hydrolysis of TEOA under acidic conditions, because it is the electron and proton donor in this hydrogen production system.
-
-
[1]
(1) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.doi: 10.1039/b800489g
-
[2]
(2) Ghirardi, M. L.; Dubini, A.; Yu, J.; Maness, P. Chem. Soc. Rev.2009, 38, 52. doi: 10.1039/b718939g
-
[3]
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[4]
(4) Ihara, M.; Nishihara, H.; Yoon, K. S.; Lenz, O.; Friedrich, B.;Nakamoto, H.; Kojima, K.; Honma, D.; Kamachi, T.; Okura, I.Photochem. Photobiol. 2006, 82, 677.
-
[5]
(5) Millsaps, J. F.; Bruce, B. D.; Lee, J.W.; Greenbaum, E.Photochem. Photobiol. 2001, 73, 630. doi: 10.1562/0031-8655(2001)073<0630:NPPPOH>2.0.CO;2
-
[6]
(6) Ihara, M.; Nakamoto, H.; Kamachi, T.; Okura, I.; Maedal, M.Photochem. Photobiol. 2006, 82, 1677.
-
[7]
(7) Komatsu, T.;Wang, R. M.; Zunszain, P. A.; Curry, S.; Tsuchida,E. J. Am. Chem. Soc. 2006, 128, 16297. doi: 10.1021/ja0656806
-
[8]
(8) Lubner, C. E.; Grimme, R.; Bryant, D. A.; lbeck, J. H.Biochemistry 2010, 49, 404. doi: 10.1021/bi901704v
-
[9]
(9) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27 (9),2178. [敏世雄, 吕功煊. 物理化学学报, 2011, 27 (9), 2178.]doi: 10.3866/PKU.WHXB20110904
-
[10]
(10) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25 (9),1829. [张晓艳, 崔晓莉. 物理化学学报, 2009, 25 (9), 1829.]doi: 10.3866/PKU.WHXB20090905
-
[11]
(11) Grimme, R. A.; Lubner, C. E.; Bryant, D. A.; lbeck, J. H.J. Am. Chem. Soc. 2008, 130, 6308. doi: 10.1021/ja800923y
-
[12]
(12) Lee, J.W.; Greenbaum, E. Appl. Biochem. Biotechnol. 2003,105, 303.
-
[13]
(13) Maker, P. D.; Terhune, R.W. Phys. Rev. Lett. 1965, 137, 801.
-
[14]
(14) Moya, F.; Druet, S. A. J.; Taran, J. P. E. Opt. Commun. 1975, 13,169. doi: 10.1016/0030-4018(75)90034-6
-
[15]
(15) Kiefer, J.; Ewart, P. Energ. Combust. 2011, 37, 525.doi: 10.1016/j.pecs.2010.11.001
-
[16]
(16) Roy, S.; Meyer, T. R.; Lucht, R. P.; Belovich, V. M.; CorporanE.; rd, J. R. Combust. Flame 2004, 138, 273. doi: 10.1016/j.combustflame.2004.04.012
-
[17]
(17) Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: NewYork, 2008; pp 473-508.
-
[18]
(18) Roy, S.; rd, J. R.; Anil, K. P. Prog. Energ. Combust. 2010, 36,280. doi: 10.1016/j.pecs.2009.11.001
-
[19]
(19) Cheng, J. X.; Book, L. D.; Xie, X. S. Opt. Lett. 2001, 26, 1341.doi: 10.1364/OL.26.001341
-
[20]
(20) Volkmer, A.; Book, L. D.; Xie, X. S. Appl. Phys. Lett. 2002, 80,1505. doi: 10.1063/1.1456262
-
[21]
(21) Du, P.W.; Knowles, K.; Eisenberg, R. J. Am. Chem. Soc. 2008,130, 12576. doi: 10.1021/ja804650g
-
[22]
(22) Marrocco, M. J. Raman Spectrosc. 2009, 40, 741. doi: 10.1002/jrs.v40:7
-
[23]
(23) Marrocco, M. J. Raman Spectrosc. 2007, 38, 1064.
-
[24]
(24) Roy, S.; Meyer, T. R.; rd, J. R. Appl. Phys. Lett. 2005, 87,264103. doi: 10.1063/1.2159576
-
[25]
(25) Kulatilaka,W. D.; Hsu, P. S.; Stauffer, H. U.; rd, J. R.; Roy,S. Appl. Phys. Lett. 2010, 97, 81112. doi: 10.1063/1.3483871
-
[26]
(26) Zhang, D.;Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L.P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126, 3440. doi: 10.1021/ja037631o
-
[1]
-
-
[1]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[2]
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[5]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[6]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[8]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[9]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[13]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[14]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[15]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[16]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[17]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[1]
Metrics
- PDF Downloads(881)
- Abstract views(1235)
- HTML views(67)