Citation:
LV Yong-Gang, LI Zhi-Jun, WU Li-Zhu, WANG Peng, FU Li-Min, ZHANG Jian-Ping. Application of Time-Resolved Coherent Anti-Stokes Raman Scattering Technique on the Study of Photocatalytic Hydrogen Production Kinetics[J]. Acta Physico-Chimica Sinica,
;2013, 29(08): 1632-1638.
doi:
10.3866/PKU.WHXB201304281
-
Based on the laser pulse output from a femtosecond regenerative amplifier and optical parametric amplifier (OPA), a broadband time-resolved coherent anti-Stokes Raman scattering (CARS) setup was assembled. Using this setup, the relationship of hydrogen CARS spectra to its amount in a mixture with air and the relevant detection time-delay were studied. Hydrogen CARS spectra without nonresonant background interference were obtained by adjusting the detection time-delay. The observed CARS intensity exhibited a linear relationship with the square of hydrogen concentration, which is consistent with the theoretical prediction. The signal-to-noise ratio showed that when the pressure of hydrogen-air mixed gas was 0.1 MPa, the detection limit of our setup was less than 0.2%. Using this setup, the hydrogen production kinetics of a platinum(II) terpyridyl acetylide molecular-cobalt catalysttriethanolamine (TEOA) system was studied. The kinetic mechanism of hydrogen production was discussed by considering the effect of changing pH. The results indicate that a high proton concentration will reduce the hydrogen production efficiency. This can be attributed to the inhibition of hydrolysis of TEOA under acidic conditions, because it is the electron and proton donor in this hydrogen production system.
-
-
-
[1]
(1) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.doi: 10.1039/b800489g
-
[2]
(2) Ghirardi, M. L.; Dubini, A.; Yu, J.; Maness, P. Chem. Soc. Rev.2009, 38, 52. doi: 10.1039/b718939g
-
[3]
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[4]
(4) Ihara, M.; Nishihara, H.; Yoon, K. S.; Lenz, O.; Friedrich, B.;Nakamoto, H.; Kojima, K.; Honma, D.; Kamachi, T.; Okura, I.Photochem. Photobiol. 2006, 82, 677.
-
[5]
(5) Millsaps, J. F.; Bruce, B. D.; Lee, J.W.; Greenbaum, E.Photochem. Photobiol. 2001, 73, 630. doi: 10.1562/0031-8655(2001)073<0630:NPPPOH>2.0.CO;2
-
[6]
(6) Ihara, M.; Nakamoto, H.; Kamachi, T.; Okura, I.; Maedal, M.Photochem. Photobiol. 2006, 82, 1677.
-
[7]
(7) Komatsu, T.;Wang, R. M.; Zunszain, P. A.; Curry, S.; Tsuchida,E. J. Am. Chem. Soc. 2006, 128, 16297. doi: 10.1021/ja0656806
-
[8]
(8) Lubner, C. E.; Grimme, R.; Bryant, D. A.; lbeck, J. H.Biochemistry 2010, 49, 404. doi: 10.1021/bi901704v
-
[9]
(9) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27 (9),2178. [敏世雄, 吕功煊. 物理化学学报, 2011, 27 (9), 2178.]doi: 10.3866/PKU.WHXB20110904
-
[10]
(10) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25 (9),1829. [张晓艳, 崔晓莉. 物理化学学报, 2009, 25 (9), 1829.]doi: 10.3866/PKU.WHXB20090905
-
[11]
(11) Grimme, R. A.; Lubner, C. E.; Bryant, D. A.; lbeck, J. H.J. Am. Chem. Soc. 2008, 130, 6308. doi: 10.1021/ja800923y
-
[12]
(12) Lee, J.W.; Greenbaum, E. Appl. Biochem. Biotechnol. 2003,105, 303.
-
[13]
(13) Maker, P. D.; Terhune, R.W. Phys. Rev. Lett. 1965, 137, 801.
-
[14]
(14) Moya, F.; Druet, S. A. J.; Taran, J. P. E. Opt. Commun. 1975, 13,169. doi: 10.1016/0030-4018(75)90034-6
-
[15]
(15) Kiefer, J.; Ewart, P. Energ. Combust. 2011, 37, 525.doi: 10.1016/j.pecs.2010.11.001
-
[16]
(16) Roy, S.; Meyer, T. R.; Lucht, R. P.; Belovich, V. M.; CorporanE.; rd, J. R. Combust. Flame 2004, 138, 273. doi: 10.1016/j.combustflame.2004.04.012
-
[17]
(17) Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: NewYork, 2008; pp 473-508.
-
[18]
(18) Roy, S.; rd, J. R.; Anil, K. P. Prog. Energ. Combust. 2010, 36,280. doi: 10.1016/j.pecs.2009.11.001
-
[19]
(19) Cheng, J. X.; Book, L. D.; Xie, X. S. Opt. Lett. 2001, 26, 1341.doi: 10.1364/OL.26.001341
-
[20]
(20) Volkmer, A.; Book, L. D.; Xie, X. S. Appl. Phys. Lett. 2002, 80,1505. doi: 10.1063/1.1456262
-
[21]
(21) Du, P.W.; Knowles, K.; Eisenberg, R. J. Am. Chem. Soc. 2008,130, 12576. doi: 10.1021/ja804650g
-
[22]
(22) Marrocco, M. J. Raman Spectrosc. 2009, 40, 741. doi: 10.1002/jrs.v40:7
-
[23]
(23) Marrocco, M. J. Raman Spectrosc. 2007, 38, 1064.
-
[24]
(24) Roy, S.; Meyer, T. R.; rd, J. R. Appl. Phys. Lett. 2005, 87,264103. doi: 10.1063/1.2159576
-
[25]
(25) Kulatilaka,W. D.; Hsu, P. S.; Stauffer, H. U.; rd, J. R.; Roy,S. Appl. Phys. Lett. 2010, 97, 81112. doi: 10.1063/1.3483871
-
[26]
(26) Zhang, D.;Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L.P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126, 3440. doi: 10.1021/ja037631o
-
[1]
-
-
-
[1]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[2]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[3]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[4]
Meihong Luo , Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[13]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[19]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(881)
- Abstract views(1368)
- HTML views(92)