Citation: XIA Juan, SONG Le-Xin, DANG Zheng, SHAO Zhi-Cheng. Polyethylene Glycol/Fe3O4 Nanoparticle Composite Materials: Structure, Physical Properties and Application[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1524-1533. doi: 10.3866/PKU.WHXB201304273 shu

Polyethylene Glycol/Fe3O4 Nanoparticle Composite Materials: Structure, Physical Properties and Application

  • Received Date: 25 February 2013
    Available Online: 27 April 2013

    Fund Project: 国家自然科学基金(21071139)资助项目 (21071139)

  • Fe3O4 nanoparticles with a highly symmetric octadecahedral nanobox structure were fabricated using β-cyclodextrin as a protection agent. A series of composites (CM-1-CM-4) of polyethylene glycol (PEG) and Fe3O4 nanoparticles with different initial mass ratios were prepared using a colloid process. We found that the shape of the composites depended on the amount of Fe3O4 nanoparticles. In particular, the melting process of PEG was not only influenced by the presence of Fe3O4 nanoparticles, but also by their amount. We also noticed that the crystallinity of PEG lowered upon compositing with Fe3O4 nanoparticles, and decreased as the amount of Fe3O4 nanoparticles increased with the exception of CM-4. Interestingly, the degradation of PEG was affected by the Fe3O4 nanoparticles, leading to the appearance of different degradation products. Like the initial Fe3O4 nanoparticles, the Fe3O4 components in the composites exhibited typical soft ferromagnetism but possessed much lower saturation magnetizations. X-ray photoelectron spectroscopy (XPS) experiments revealed that electronic shift occurred from iron to oxygen. The resulting decrease in the electronic density of iron explained the observed decrease in saturation magnetizations of the composites. The composites induced strong surface-enhanced Raman scattering of organic dyes that depended on the amount of Fe3O4 nanoparticles in the composite. This study contributes to the development of composite materials combining polymers with inorganic nanoparticles.

  • 加载中
    1. [1]

      (1) (a) Fu, M. X.; Chen, F. F.; Zhang, J. X.; Shi, G. Q. J. Mater. Chem. 2002, 12, 2331. doi: 10.1039/b201405j

    2. [2]

      (b) Liang, G. J.; Zhong, Z. C.; Xu, J.; Zhang, Z. C.; Chen, M.H.; Li, Z. F.; He, P.; Hou, Q. F. Acta Phys. -Chim. Sin. 2012, 28,2852. [梁桂杰, 钟志成, 许杰, 张增常, 陈美华, 李在房,和平, 候秋飞. 物理化学学报, 2012, 28, 2852.] doi: 10.3866/PKU.WHXB201210091

    3. [3]

      (2) (a) Liu, M.; Guo, X. F.;Wang, J. M.; Jiang, L. Acta Phys. -Chim. Sin. 2012, 28, 2931. [刘萌, 郭向飞, 王景明,江雷. 物理化学学报, 2012, 28, 2931.] doi: 10.3866/PKU.WHXB201209262

    4. [4]

      (b) Darmanin, T.; Guittard, F.; Ami ni, S.; Noblin, X.;Kofman, R.; Celestini, F. Soft Matter 2011, 7, 1053.

    5. [5]

      (3) Zhang, R. X.; Gao, B. J.;Wei, X. P. Acta Phys. -Chim. Sin.2012, 28, 223. [张瑞霞, 高保娇, 位霄鹏. 物理化学学报,2012, 28, 223.] doi: 10.3866/PKU.WHXB201111171

    6. [6]

      (4) Zhang, H. Y.; Qi, R. R.; Tong, M. K.; Su, Y. Z.; Huang, M.J. Appl. Polym. Sci. 2012, 125, 1152. doi: 10.1002/app.v125.2

    7. [7]

      (5) (a) Frickel, N.; Greenbaum, A. G.; ttlieb, M.; Schmidt, A. M.J. Phys. Chem. C 2011, 115, 10946. doi: 10.1021/jp111348e

    8. [8]

      (b) Liu, J.; Chen, G. M.; Yang, J. P. Polymer 2008, 48, 3923.

    9. [9]

      (6) (a) Chen,W.; Qu, B. J. J. Mater. Chem. 2004, 14, 1705. doi: 10.1039/b401790k

    10. [10]

      (b) Ghassemzadeh, L.; Pace, G.; DiNoto, V.; Muller, K. Phys. Chem. Chem. Phys. 2011, 13, 9327.

    11. [11]

      (7) Zhang, J. F.; Sun, X. Z. Biomacromolecules 2004, 5, 1446. doi: 10.1021/bm0400022

    12. [12]

      (8) (a) Song, H. M.; Kim, Y. J.; Park, J. H. J. Phys. Chem. C 2008,112, 5397. doi: 10.1021/jp709721g

    13. [13]

      (b) Song, L. X.; Du, F. Y.; Yang, J.; Dang, Z.; Yang, J.; Shao, Z.C. Soft Matter 2011, 7, 6671.

    14. [14]

      (9) (a) Song, L. X.;Wang, M.; Pan, S. Z.; Yang, J.; Chen, J.; Yang,J. J. Mater. Chem. 2011, 21, 7982. doi: 10.1039/c1jm10252d

    15. [15]

      (b)Wang, M.; Song, L. X.; Dang, Z.; Zhu, L. H.; Yang, J.Chem. Lett. 2011, 40, 478.

    16. [16]

      (10) (a) Babinec, S. J.; Mussell, R. D.; Lundgard, R. L.; Cieslinski,R. Adv. Mater. 2000, 12, 1823.

    17. [17]

      (b) Yang, J.; Song, L. X.; Guo, X. Q.; Yang, J.; Chen, J. Chin. J. Inorg. Chem. 2011, 27, 2013. [杨军, 宋乐新, 郭雪晴,杨晶, 陈杰. 无机化学学报, 2011, 27, 2013.]

    18. [18]

      (11) Zhang, L.; Zhu, J. Q.; Zhou,W. B.;Wang, J.;Wang, Y. Energy2012, 39, 294. doi: 10.1016/j.energy.2012.01.011

    19. [19]

      (12) Sakai, T.; Mukawa, T.; Tsuchiya, K.; Sakai, H.; Abe, M.J. Nanosci. Nanotechnol. 2009, 9, 461. doi: 10.1166/jnn.2009.J058

    20. [20]

      (13) Kuzhir, P.; Paddubskaya, A.; Bychanok, D.; Nemilentsau, A.;Shuba, M.; Plusch, A.; Maksimenko, S.; Bellucci, S.; Coderoni,L.; Micciulla, F.; Sacco, I.; Rinaldi, G.; Macutkevic, J.; Seliuta,D.; Valusis, G.; Banys, J. Thin Solid Films 2011, 519, 4114. doi: 10.1016/j.tsf.2011.01.198

    21. [21]

      (14) Peng, F. B.; Lu, L. Y.; Sun, H. L.;Wang, Y. Q.; Liu, J. Q.; Jiang,Z. Y. Chem. Mater. 2005, 17, 6790. doi: 10.1021/cm051890q

    22. [22]

      (15) (a) Triebel, C.; Vasylyev, S.; Damm, C.; Stara, H.; Ozpinar, C.;Hausmann, S.; Peukert,W.; Munstedt, H. J. Mater. Chem. 2011,21, 4377. doi: 10.1039/c0jm03487h

    23. [23]

      (b) Schubert, U. Chem. Mater. 2001, 13, 3487.

    24. [24]

      (16) (a) Zeng, L. Y.; Ren,W. Z.; Zheng, J. J.; Cui, P.;Wu, A. G.Phys. Chem. Chem. Phys. 2012, 14, 2631. doi: 10.1039/c2cp23196d

    25. [25]

      (b) Chen, P. J.; Hu, S. H.; Hsiao, C. S.; Chen, Y. Y.; Liu, D. M.;Chen, S. Y. J. Mater. Chem. 2011, 21, 2535.

    26. [26]

      (17) (a) Chen, Z. L.; Li, J.; Zhang, X.;Wu, Z. N.; Zhang, H.; Sun, H.Z.; Yang, B. Phys. Chem. Chem. Phys. 2012, 14, 6119.

    27. [27]

      (b) Hong, Z. Q.; Li, J. X.; Zhang, F.; Zhou, L. H. Acta Phys. -Chim. Sin. 2013, 29, 590. [洪周琴, 李金霞, 张芳,周丽绘. 物理化学学报, 2013, 29, 590.] doi: 10.3866/PKU.WHXB201212123

    28. [28]

      (18) (a) Liu, B.; Zhang,W.; Yang, F. K.; Feng, H. L.; Yang, X. L.J. Phys. Chem. C 2011, 115, 15875. doi: 10.1021/jp204976y

    29. [29]

      (b) Jiang,W.; Li, F. S.; Chen, L. Y.; Yang, Y.; Chu, J. J. Acta Phys. -Chim. Sin. 2005, 21, 182. [姜炜, 李凤生, 陈令允,杨毅, 楚建军. 物理化学学报, 2005, 21, 182.] doi: 10.3866/PKU.WHXB20050214

    30. [30]

      (19) (a) Yang, T. I.; Brown, R. N. C.; Kempel, L. C.; Kofinas, P. J.Magn. Magn. Mater. 2008, 320, 2714. doi: 10.1016/j.jmmm.2008.06.008

    31. [31]

      (b) Gas, J.; Poddar, P.; Almand, J.; Srinath, S.; Srikanth, H. Adv. Funct. Mater. 2006, 16, 71.

    32. [32]

      (20) French, A. C.; Thompson, A. L.; Davis, B. G. Angew. Chem. Int. Edit. 2009, 48, 1248. doi: 10.1002/anie.200804623

    33. [33]

      (21) Obermeier, B.;Wurm, F.; Man ld, C.; Frey, H. Angew. Chem. Int. Edit. 2011, 50, 7988. doi: 10.1002/anie.v50.35

    34. [34]

      (22) Ohki, T.; Harada, M.; Okada, T. J. Phys. Chem. B 2007, 111,7245.

    35. [35]

      (23) (a) Wei, D.; Ge, L. L.; Guo, R. J. Phys. Chem. B 2010, 114,3472. doi: 10.1021/jp910315e

    36. [36]

      (b) Pan, S. Z.; Song, L. X., Bai, L.;Wang, M.; Zhu, L. H.; Chen,J. Curr. Org. Chem. 2011, 15, 862.

    37. [37]

      (24) (a) Yang, Y.; Zhang, Y. M.; Chen, Y.; Zhao, D.; Chen, J. T.; Liu,Y. Chem.-Eur. J. 2012, 18, 4208. doi: 10.1002/chem.v18.14

    38. [38]

      (b) Cai,W. S.; Xia, B. Y.; Shao, X. G.; Maigret, B.; Pan, Z. X.Chem. Phys. Lett. 2000, 319, 708.

    39. [39]

      (c) Shao, Z. C.; Song, L. X.; Teng, Y.; Dang, Z.; Xia, J. Acta Phys. -Chim. Sin. 2013, 29, 460. [邵志成, 宋乐新, 滕越,党政, 夏娟. 物理化学学报, 2013, 29, 460.] doi: 10.3866/PKU.WHXB201301071

    40. [40]

      (25) (a) Song, L. X.; Yang, J.; Bai, L.; Du, F. Y.; Chen, J.;Wang, M.Inorg. Chem. 2011, 50, 1682. doi: 10.1021/ic1021609

    41. [41]

      (b) Song, L. X.; Chen, J.; Zhu, L. H.; Xia, J.; Yang, J. Inorg. Chem. 2011, 50, 7988.

    42. [42]

      (26) (a) Cruz, L. A. C.; Perez, C. A. M.; Romero, H. A. M.; Casillas,P. E. G. J. Alloy. Compd. 2008, 466, 330. doi: 10.1016/j.jallcom.2007.11.081

    43. [43]

      (b) Xu, P.; Song, L. X. Acta Phys. -Chim. Sin. 2008, 24, 2214.[徐鹏, 宋乐新. 物理化学学报, 2008, 24, 2214.] doi: 10.3866/PKU.WHXB20081212

    44. [44]

      (c) Xu, P.; Song, L. X. Acta Phys. -Chim. Sin. 2008, 24, 729.[徐鹏, 宋乐新. 物理化学学报, 2008, 24, 729.] doi: 10.3866/PKU.WHXB20080433

    45. [45]

      (27) (a) Song, L. X.; Xu, P. J. Phys. Chem. A 2008, 112, 11341. doi: 10.1021/jp806026q

    46. [46]

      (b) Dang, Z.; Song, L. X.; Yang, J.; Chen, J.; Teng, Y. Dalton Trans. 2012, 41, 3006.

    47. [47]

      (c) Du, F. Y.; Song, L. X.;Wang, M.; Pan, S. Z.; Zhu, L. H.;Yang, J. Soft Matter 2011, 7, 9078.

    48. [48]

      (28) Yu, X. G.; Shan, Y.; Du, B.; Chen, K. Z. CrystEngComm 2011,13, 1525. doi: 10.1039/c0ce00280a

    49. [49]

      (29) Jiao, F.; Jumas, J. C.;Womes, M.; Chadwick, A. V.; Harrison,A.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 12905. doi: 10.1021/ja063662i

    50. [50]

      (30) Wang, B.; Zhang, F.; Qiu, J. H.; Zhang, X. H.; Chen, H.; Du, Y.;Xu, P. Acta Chim. Sin. 2009, 67, 1211. [王冰, 张锋,邱建华, 张雪洪, 陈洪, 杜毅, 许平. 化学学报, 2009, 67,1211.]

    51. [51]

      (31) Wang, H. B.; Liu, Z. L.; Lu, Q. H.; Peng, L.; Yao, K. L. Chin. J. Inorg. Chem. 2004, 20, 1279. [汪汉斌, 刘祖黎, 卢强华,彭丽, 姚凯伦. 无机化学学报, 2004, 20, 1279.]

    52. [52]

      (32) Hapiot, F.; Bricout, H.; Tilloy, S.; Monflier, E. Eur. J. Inorg. Chem. 2012, 1571.

    53. [53]

      (33) Jean-Marie, A.; Griboval-Constant, A.; Khodakov, A. Y.;Monflier, E.; Diehl, F. Chem. Commun. 2011, 47, 10767. doi: 10.1039/c1cc13800f

    54. [54]

      (34) Yang, X.W.; Jiang,W.; Liu, L.; Chen, B. H.;Wu, S. X.; Sun, D.P.; Li, F. S. J. Magn. Magn. Mater. 2012, 324, 2249. doi: 10.1016/j.jmmm.2012.02.111

    55. [55]

      (35) Yang, C.;Wu, J. J.; Hou, Y. L. Chem. Commun. 2011, 47, 5130.doi: 10.1039/c0cc05862a

    56. [56]

      (36) Wu, H. X.; Gao, G.; Zhou, X. J.; Zhang, Y.; Guo, S.W.CrystEngComm 2012, 14, 499. doi: 10.1039/c1ce05724c

    57. [57]

      (37) Wang, L. X.; Li, J. C.; Jiang, Q.; Zhao, L. J. Dalton Trans. 2012,41, 4544. doi: 10.1039/c2dt11827k

    58. [58]

      (38) Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Adv. Mater. 2004, 16, 137.

    59. [59]

      (39) Zhang, D.; Zhang, X.; Ni, X.; Song, J.; Zheng, H. Cryst. Growth Des. 2007, 7, 2117. doi: 10.1021/cg060395j

    60. [60]

      (40) Li, Z.; Sun, Q.; Gao, M. Y. Angew. Chem. Int. Edit. 2005, 44,123.

    61. [61]

      (41) Yiapanis, G.; Henry, D. J.; Maclaughlin, S.; Evans, E.;Yarovsky, I. Langmuir 2012, 28, 17263. doi: 10.1021/la3023375

    62. [62]

      (42) Huang, C. L.; Jiao, L.; Zeng, J. B.; Zhang, M.; Xiao, L. P.; Yang,K. K.;Wang, Y. Z. Polymer 2012, 53, 3780. doi: 10.1016/j.polymer.2012.06.027

    63. [63]

      (43) Pan, S. Z.; Song, L. X.; Chen, J.; Du, F. Y.; Yang, J.; Xia, J.Dalton Trans. 2011, 40, 10117. doi: 10.1039/c1dt11090j

    64. [64]

      (44) Wunderlich, B. Thermal Analysis; Academic Press: LosAngeles, 1990.

    65. [65]

      (45) Zhou, J. P.; He, H. C.; Shi, Z.; Nan, C.W. Appl. Phys. Lett.2006, 88, 013111. doi: 10.1063/1.2162262

    66. [66]

      (46) Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S.Surf. Interface Anal. 2004, 36, 1564.

    67. [67]

      (47) Yang, C. Q.;Wang, G.; Lu, Z. Y.; Sun, J.; Zhuang, J. Q.; Yang,W. S. J. Mater. Chem. 2005, 15, 4252. doi: 10.1039/b505018a

    68. [68]

      (48) Zhang, Z. Y.; Liu, X. X.;Wang, X. J.;Wu, Y. P.; Liu, Y.J. Magn. Magn. Mater. 2012, 324, 2177. doi: 10.1016/j.jmmm.2012.02.107

    69. [69]

      (49) (a) Chen, L. M.; Liu, Y. N. CrystEngComm 2011, 13, 6481. doi: 10.1039/c1ce05557g

    70. [70]

      (b) Doherty, M. D.; Murphy, A.; Mcphillips, J.; Pollard, R. J.;Dawson, P. J. Phys. Chem. C 2010, 114, 19913.

    71. [71]

      (50) (a) Jena, B. K.; Raj, C. R. Chem. Mater. 2008, 20, 3546. doi: 10.1021/cm7019608

    72. [72]

      (b) Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Anal. Chem. 2005, 77, 338.


  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(894)
  • Abstract views(1163)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return