Citation: QIAN Jia-Sheng, LIU Ming-Xian, GAN Li-Hua, LÜ Yao-Kang, CHEN Ling-Yan, YE Rui-Jie, CHEN Long-Wu. Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1494-1500. doi: 10.3866/PKU.WHXB201304271 shu

Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer

  • Received Date: 17 January 2013
    Available Online: 27 April 2013

    Fund Project: 国家自然科学基金(21207099, 21273162) (21207099, 21273162) 上海市科学技术委员会(11nm0501000, 12ZR1451100) (11nm0501000, 12ZR1451100) 上海市教委重点学科建设项目(J50102) (J50102)中央高校基本科研业务费(2011KJ023)资助 (2011KJ023)

  • Microporous carbon was prepared using a novel procedure based on a zinc(II)-organic coordination polymer. The polymer was prepared through the coordination interaction of zinc ions with tartaric acid, and then it was introduced into the open networks of resorcinol/formaldehyde (R/F) resol using hydrogen-bonding interactions. The R/F resol and zinc-organic coordination compound system copolymerized to produce an R/F and zinc-organic coordination copolymer. The copolymer was then heat-treated at 950℃ to decompose and evaporate zinc to fabricate microporous carbon materials. The carbon materials possessed relatively regular large micropores, with a specific surface area of up to 1260 m2·g-1 and a total pore volume of 0.63 cm3·g-1. The resultant microporous carbon materials were used as supercapacitor electrodes, exhibiting an equivalent series resistance of 0.46 Ω, and ideal capacitive behavior with a rectangular shape in cyclic voltammograms. Galvanostatic charge/discharge measurements of the carbon materials gave a specific capacitance of 196 F·g-1 at a current density of 1 A· g-1 and 137 F·g-1 at a large current density of 10 A·g-1. A high retention of 98% was measured for the long-term cycling stability (~1000 cycles) of the mesoporous carbon. Overall, the microporous carbon materials exhibited very od electrochemical performance. This study highlights the potential of well-designed microporous carbon materials as electrodes for diverse supercapacitor applications.

    1. [1]

      (1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; KluwerAcademic Plenum Publishers: New York, 1999; pp 1-200.

    3. [3]

      (3) Rolison, D. R. Science 2003, 299, 1698. doi: 10.1126/science.1082332

    4. [4]

      (4) Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736

    5. [5]

      (5) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.doi: 10.1039/c1cs15060j

    6. [6]

      (6) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297

    7. [7]

      (7) Guo, P.; Gu, Y.; Lei, Z.; Cui, Y.; Zhao, X. S. Microporous Mesoporous Mat. 2012, 156, 176. doi: 10.1016/j.micromeso.2012.02.043

    8. [8]

      (8) Kyotani, T.; Ma, Z.; Tomita, A. Carbon 2003, 41, 1451. doi: 10.1016/S0008-6223(03)00090-3

    9. [9]

      (9) Wang, D.; Li, F.; Liu, M.; Lu, G.; Cheng, H. Angew. Chem. Int. Edit. 2008, 47, 373.

    10. [10]

      (10) Mahata, P.; Madras, G.; Natarajan, S. J. Phys. Chem. B 2006,110, 13759.

    11. [11]

      (11) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.;Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208

    12. [12]

      (12) Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. Int. Edit.2009, 48, 7502. doi: 10.1002/anie.v48:41

    13. [13]

      (13) Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735.

    14. [14]

      (14) Jiang, H.; Liu, B.; Lan, Y.; Kuratani, K.; Akita, T.; Shioyama,H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k

    15. [15]

      (15) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2008, 130, 5390. doi: 10.1021/ja7106146

    16. [16]

      (16) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J.; Yushin, G. J. Am. Chem. Soc. 2010, 132, 3252. doi: 10.1021/ja910307x

    17. [17]

      (17) Zhao, C.;Wang,W.; Yu, Z.; Zhang, H.;Wang, A.; Yang, Y.J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b

    18. [18]

      (18) Li, X.; Rong, J.;Wei, B. ACS Nano 2010, 4, 6039. doi: 10.1021/nn101595y

    19. [19]

      (19) Lin, R.; Taberna, P. L.; Chmiola, L.; Guay, D.; tsi, Y.;Simon, P. J. Electrochem. Soc. 2009, 156, A7.

    20. [20]

      (20) Wu, Q.; He, K.; Mi, H.; Zhang, X. Mater. Chem. Phys. 2007,101, 367. doi: 10.1016/j.matchemphys.2006.06.013

    21. [21]

      (21) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. Phys. Chem. Chem. Phys. 2011, 13, 17615. doi: 10.1039/c1cp21910c

    22. [22]

      (22) Xie, K.; Qin, X.;Wang, X.;Wang, Y.; Tao, H.;Wu, Q.; Yang, L.;Hu, Z. Adv. Mater. 2012, 24, 347. doi: 10.1002/adma.201103872

    23. [23]

      (23) Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Carbon 1998,36, 1257. doi: 10.1016/S0008-6223(97)00202-9

    24. [24]

      (24) Tseng, R. L.; Tseng, S. K. J. Colloid Interface Sci. 2005, 287,428. doi: 10.1016/j.jcis.2005.02.033

    25. [25]

      (25) Kim, K.; Park, S. Electrochim. Acta 2012, 78, 147. doi: 10.1016/j.electacta.2012.05.116

    26. [26]

      (26) Wu, X.; Hong, X.; Nan, J.; Luo, Z.; Zhang, Q.; Li, L.; Chen, H.;Hui, K. S. Microporous Mesoporous Mat. 2012, 160, 25. doi: 10.1016/j.micromeso.2012.04.013

    27. [27]

      (27) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010,26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010,26, 1254.] doi: 10.3866/PKU.WHXB20100330

    28. [28]

      (28) Pell,W. G.; Conway, B. E. J. Power Sources 1996, 63, 255. doi: 10.1016/S0378-7753(96)02525-6

    29. [29]

      (29) Cao, G. F.; Liao, Y.; Zhang, X. H.; Chen, J. H. Acta Phys. -Chim. Sin. 2011, 27, 1679. [曹国飞, 廖奕, 张小华,陈金华. 物理化学学报, 2011, 27, 1679.] doi: 10.3866/PKU.WHXB20110623

    30. [30]

      (30) Liu, C. L.;Wen, Y. H.; Cheng, J.; Guo, Q. G.; Cao, G. P.; Liu,L.; Yang, Y. S. Acta Phys. -Chim. Sin. 2005, 21, 786. [刘春玲,文越华, 程杰, 郭全贵, 曹高萍, 刘朗, 杨裕生. 物理化学学报, 2005, 21, 786.] doi: 10.3866/PKU.WHXB20050717


    1. [1]

      (1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; KluwerAcademic Plenum Publishers: New York, 1999; pp 1-200.

    3. [3]

      (3) Rolison, D. R. Science 2003, 299, 1698. doi: 10.1126/science.1082332

    4. [4]

      (4) Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736

    5. [5]

      (5) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.doi: 10.1039/c1cs15060j

    6. [6]

      (6) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297

    7. [7]

      (7) Guo, P.; Gu, Y.; Lei, Z.; Cui, Y.; Zhao, X. S. Microporous Mesoporous Mat. 2012, 156, 176. doi: 10.1016/j.micromeso.2012.02.043

    8. [8]

      (8) Kyotani, T.; Ma, Z.; Tomita, A. Carbon 2003, 41, 1451. doi: 10.1016/S0008-6223(03)00090-3

    9. [9]

      (9) Wang, D.; Li, F.; Liu, M.; Lu, G.; Cheng, H. Angew. Chem. Int. Edit. 2008, 47, 373.

    10. [10]

      (10) Mahata, P.; Madras, G.; Natarajan, S. J. Phys. Chem. B 2006,110, 13759.

    11. [11]

      (11) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.;Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208

    12. [12]

      (12) Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. Int. Edit.2009, 48, 7502. doi: 10.1002/anie.v48:41

    13. [13]

      (13) Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735.

    14. [14]

      (14) Jiang, H.; Liu, B.; Lan, Y.; Kuratani, K.; Akita, T.; Shioyama,H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k

    15. [15]

      (15) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2008, 130, 5390. doi: 10.1021/ja7106146

    16. [16]

      (16) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J.; Yushin, G. J. Am. Chem. Soc. 2010, 132, 3252. doi: 10.1021/ja910307x

    17. [17]

      (17) Zhao, C.;Wang,W.; Yu, Z.; Zhang, H.;Wang, A.; Yang, Y.J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b

    18. [18]

      (18) Li, X.; Rong, J.;Wei, B. ACS Nano 2010, 4, 6039. doi: 10.1021/nn101595y

    19. [19]

      (19) Lin, R.; Taberna, P. L.; Chmiola, L.; Guay, D.; tsi, Y.;Simon, P. J. Electrochem. Soc. 2009, 156, A7.

    20. [20]

      (20) Wu, Q.; He, K.; Mi, H.; Zhang, X. Mater. Chem. Phys. 2007,101, 367. doi: 10.1016/j.matchemphys.2006.06.013

    21. [21]

      (21) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. Phys. Chem. Chem. Phys. 2011, 13, 17615. doi: 10.1039/c1cp21910c

    22. [22]

      (22) Xie, K.; Qin, X.;Wang, X.;Wang, Y.; Tao, H.;Wu, Q.; Yang, L.;Hu, Z. Adv. Mater. 2012, 24, 347. doi: 10.1002/adma.201103872

    23. [23]

      (23) Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Carbon 1998,36, 1257. doi: 10.1016/S0008-6223(97)00202-9

    24. [24]

      (24) Tseng, R. L.; Tseng, S. K. J. Colloid Interface Sci. 2005, 287,428. doi: 10.1016/j.jcis.2005.02.033

    25. [25]

      (25) Kim, K.; Park, S. Electrochim. Acta 2012, 78, 147. doi: 10.1016/j.electacta.2012.05.116

    26. [26]

      (26) Wu, X.; Hong, X.; Nan, J.; Luo, Z.; Zhang, Q.; Li, L.; Chen, H.;Hui, K. S. Microporous Mesoporous Mat. 2012, 160, 25. doi: 10.1016/j.micromeso.2012.04.013

    27. [27]

      (27) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010,26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010,26, 1254.] doi: 10.3866/PKU.WHXB20100330

    28. [28]

      (28) Pell,W. G.; Conway, B. E. J. Power Sources 1996, 63, 255. doi: 10.1016/S0378-7753(96)02525-6

    29. [29]

      (29) Cao, G. F.; Liao, Y.; Zhang, X. H.; Chen, J. H. Acta Phys. -Chim. Sin. 2011, 27, 1679. [曹国飞, 廖奕, 张小华,陈金华. 物理化学学报, 2011, 27, 1679.] doi: 10.3866/PKU.WHXB20110623

    30. [30]

      (30) Liu, C. L.;Wen, Y. H.; Cheng, J.; Guo, Q. G.; Cao, G. P.; Liu,L.; Yang, Y. S. Acta Phys. -Chim. Sin. 2005, 21, 786. [刘春玲,文越华, 程杰, 郭全贵, 曹高萍, 刘朗, 杨裕生. 物理化学学报, 2005, 21, 786.] doi: 10.3866/PKU.WHXB20050717


  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(732)
  • Abstract views(1103)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return