Citation: ZHOU Dan-Hong, LI Miao-Miao, CUI Li-Li. Photophysical Properties and Photoinduced Electron Transfer Mechanism in a Near-IR Fluorescent Probe for Monitoring Peroxynitrite[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1453-1460. doi: 10.3866/PKU.WHXB201304244 shu

Photophysical Properties and Photoinduced Electron Transfer Mechanism in a Near-IR Fluorescent Probe for Monitoring Peroxynitrite

  • Received Date: 18 March 2013
    Available Online: 24 April 2013

  • A heptamethine cyanine dye containing an organoselenium functional group is a near-IR fluorescent probe that operates based on photoinduced electron transfer (PET). This probe can be used for highly sensitive and selective monitoring of peroxynitrite under physiological conditions. In this paper, the photophysical properties and PET mechanism of the probe molecule were investigated by time-dependent density functional theory (TD-DFT) calculations. The results indicated that the excitation in the fluorophore involves an electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). The HOMO level of the recognizer moiety increased in energy above that of the HOMO occupied with a single electron of the fluorophore, leading to transfer of one electron to the heptamethine cyanine moiety, which quenched the fluorescence emission. After the Se moiety was oxidized, the HOMO level of the recognizer moiety decreased in energy, the PET process was prevented, and the fluorescence emission was recovered. It was further proposed that the PET was contributed to by the p electron of the nitrogen atom in the aniline moiety of the probe. The PET efficiency is regulated by the oxidation and reduction events of the organoselenium moiety, resulting in“on-off”fluorescence emission.

  • 加载中
    1. [1]

      (1) de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A.J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.1997, 97, 1515. doi: 10.1021/cr960386p

    2. [2]

      (2) Zaheer, A.; Lenkinskl, R. E.; Mahmood, A.; Jones, A. G.;Cantley, L. C.; Frangioni, J. V. Nat. Biotechnol. 2001, 19, 1148.doi: 10.1038/nbt1201-1148

    3. [3]

      (3) Tang, B.; Yu, F.; Li, P.; Tong, L.; Duan, X.; Xie, T.;Wang, X.J. Am. Chem. Soc. 2009, 131, 3016. doi: 10.1021/ja809149g

    4. [4]

      (4) recki, T.; Patonay, G.; Strekowski, L. J. Heterocycl. Chem.1996, 33, 1871. doi: 10.1002/jhet.v33:6

    5. [5]

      (5) Yang, C.; Shimelis, O.; Zhou, X.; Li, G.; Bayle, C.; Nertz, M.;Lee, H.; Strekowski, L.; Patonay, G.; Couderc, F.; Giese, R.W.J. Chromatogr. A 2002, 979, 307. doi: 10.1016/S0021-9673(02)01441-3

    6. [6]

      (6) Gallaher, D. L.; Johnson, M. E. Analyst 1999, 124, 1541.doi: 10.1039/a904541d

    7. [7]

      (7) Yu, F. B.; Li, P.; Li, G. Y.; Zhao, G. J.; Chu, T. S.; Han, K. L.J. Am. Chem. Soc. 2011, 133, 11030. doi: 10.1021/ja202582x

    8. [8]

      (8) Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.;Hafeman, D. G.; Hoekstra,W. G. Science 1973, 179, 588.doi: 10.1126/science.179.4073.588

    9. [9]

      (9) Nogueira, C.W.; Zeni, G.; Rocha, J. B. Chem. Rev. 2004, 104,6255. doi: 10.1021/cr0406559

    10. [10]

      (10) Mugesh, G.; du Mont,W.W.; Sies, H. Chem. Rev. 2001, 101,2125. doi: 10.1021/cr000426w

    11. [11]

      (11) Weller, A. Pure Appl. Chem. 1968, 16, 115. doi: 10.1351/pac196816010115

    12. [12]

      (12) Rehm, D.;Weller, A. Isr. J. Chem. 1970, 8, 259

    13. [13]

      (13) Terai, T.; Kikuchi, K.; Iwasawa, S.; Kawabe, T.; Hirata, Y.;Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6938.

    14. [14]

      (14) Petsalakis, I. D.; Lathiotakis, N. N.; Theodorakopoulos, G.J. Mol. Struct.-Theochem 2008, 867, 64. doi: 10.1016/j.theochem.2008.07.025

    15. [15]

      (15) Salman, H.; Tal, S.; Chuvilov, Y.; Solovey, O.; Abraham, Y.;Kapon, M.; Suwinska, K.; Eichen, Y. Inorg. Chem. 2006, 45 (14), 5315. doi: 10.1021/ic051897+

    16. [16]

      (16) Han, F.; Chi, L.; Liang, X.; Ji, S.; Liu, S.; Zhou, F.;Wu, Y.; Han,K.; Zhao, J.; James, T. D. J. Org. Chem. 2009, 74 (3), 1333.doi: 10.1021/jo8025669

    17. [17]

      (17) Chi, L. N.;Wu, Y. B.; Zhang, X.; Ji, S. M.; Shao, J. Y.; Guo, H.M.;Wang, X.; Zhao, J. Z. J. Fluores. 2010, 20, 1255.doi: 10.1007/s10895-010-0677-2

    18. [18]

      (18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    19. [19]

      (19) dbout, N.; Salahub, D. R.; Andzelm, J.;Wimmer, E. Can. J. Chem. 1992, 70, 560. doi: 10.1139/v92-079

    20. [20]

      (20) Foster, J. P.;Weinhold, F. J. Am. Chem. Soc. 1980, 102 (24),7211.

    21. [21]

      (21) Gross, E. K. U.; Kohn,W. Phys. Rev. Lett. 1985, 55 (26), 2850.doi: 10.1103/PhysRevLett.55.2850

    22. [22]

      (22) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.1998, 109, 8218. doi: 10.1063/1.477483

    23. [23]

      (23) Vosko, S. H.;Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.doi: 10.1139/p80-159

    24. [24]

      (24) Xu,W. H.; Zhang, Y.; Liu,W. J. Science in China B-Chemistry2009, 39 (11), 1484. [许文华, 张勇, 刘文剑. 中国科学B辑: 化学, 2009, 39 (11), 1484.]

    25. [25]

      (25) Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098

    26. [26]

      (26) Perdew, J. P. Phys. Rev. B 1986, 33, 8832.

    27. [27]

      (27) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346.doi: 10.1063/1.469408

    28. [28]

      (28) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Chem. Phys.2001, 114, 5691. doi: 10.1063/1.1354187

    29. [29]

      (29) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. doi: 10.1002/jcc.10189

    30. [30]

      (30) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision E.01; Gaussian Inc.:Wallingford, CT, 2010.

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2004.

    32. [32]

      (32) Eckert, F.; Klamt, A. AIChE J. 2002, 48, 369.

    33. [33]

      (33) Awuah, S. G.; Polreis, J.; Biradar, V.; You, Y. Org. Lett. 2011, 13 (15), 3884. doi: 10.1021/ol2014076

    34. [34]

      (34) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2007, 23, 1831.[王溢磊, 吴国是. 物理化学学报, 2007, 23, 1831.] doi: 10.1016/S1872-1508(07)60086-2

    35. [35]

      (35) Liu, X. J.;Wang, N,; Cheng, H. Acta Phys. -Chim. Sin. 2011, 27,1640. [刘小君, 王宁, 程浩. 物理化学学报, 2011, 27,1640.] doi: 10.3866/PKU.WHXB20110718

    36. [36]

      (36) Liu, X. J.; Lin, T.; Gao, S.W.; Ma, R.; Zhang, J. Y.; Cai, X. C.;Yang, L.; Teng, F. Acta Phys. -Chim. Sin. 2012, 28, 1337.[刘小君, 林涛, 高少伟, 马睿, 张晋悦, 蔡新晨, 杨磊,滕枫. 物理化学学报, 2012, 28, 1337.] doi: 10.3866/PKU.WHXB201204092

    37. [37]

      (37) Wang, F. J.; Zhou, D. H.; Zuo, S. Y.; Cao, J. F.; Peng, X. J. Acta Phys. -Chim. Sin. 2012, 28, 1645. [王凤娇, 周丹红, 左士颖,曹建芳, 彭孝军. 物理化学学报, 2012, 28, 1645.] doi: 10.3866/PKU.WHXB201205083

    38. [38]

      (38) Ren, X. F.; Ren, A. M.;Wang, Q.; Feng, J. K. Acta Phys. -Chim. Sin. 2010, 26, 110. [任雪峰, 任爱民, 王钦, 封继康.物理化学学报, 2010, 26, 110.] doi: 10.3866/PKU.WHXB20100103

    39. [39]

      (39) Zhao, P.; Xu, L. C.; Ma, L. Acta Phys. -Chim. Sin. 2011, 27,2541. [赵平, 绪连彩, 马丽. 物理化学学报, 2011, 27,2541.] doi: 10.3866/PKU.WHXB20111021


  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

Metrics
  • PDF Downloads(902)
  • Abstract views(1318)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return