Citation: JIANG He-Yan, WU Zhi-Feng, CHEN Hua. Asymmetric Hydrogenation of Aromatic Ketones Catalyzed by Cinchona-Modified Ir/SiO2[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1572-1581. doi: 10.3866/PKU.WHXB201304243 shu

Asymmetric Hydrogenation of Aromatic Ketones Catalyzed by Cinchona-Modified Ir/SiO2

  • Received Date: 4 February 2013
    Available Online: 24 April 2013

    Fund Project: 国家自然科学基金(21201184) (21201184) 重庆市科委自然科学基金计划(CSTC, 2011BA5025) (CSTC, 2011BA5025) 重庆工商大学科研启动基金(2010-56-14) (2010-56-14) 重庆市百名学术学科领军人才培养计划和重庆市科技创新团队(KJTD201020)资助项目 (KJTD201020)

  • The asymmetric hydrogenation of aromatic ketones catalyzed by cinchona- and triphenylphosphine (tpp)-modified Ir/SiO2 was studied. The heterogeneous enantioselective hydrogenation of heterocyclic ketones using a supported iridium catalyst was also investigated. Different analytical techniques, including inductively coupled plasma-atomic emission spectroscopy (ICP-AES), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), the Brunauer- Emmett-Teller (BET) method, infrared (IR) spectroscopy, 31P solid state nuclear magnetic resonance (NMR) spectroscopy, homogeneous- heterogeneous comparison experiment, conventional filtering test, and mercury poisoning experiment, were used to characterize the catalytic system. HRTEM, XPS, and the BET method clearly characterized the catalytic system. IR and 31P solid state NMR spectra provided useful information about the interactions between modifier, metal, and stabilizer. The homogeneous-heterogeneous comparison experiment, conventional filtering test, and mercury poisoning experiment clearly showed the differences between supported, and homogeneous catalysts. In addition, the effects of different stabilizers, modifiers, iridium content, solvents, and base additives on the asymmetric hydrogenation of aromatic ketones were investigated in detail. The results showed that cinchona alkaloids positively modified the Ir/ SiO2 catalyst. Under the optimum conditions, the hydrogenation enantioselectivities of acetophenone and its derivatives were 52%-96%. The enantioselectivities of the hydrogenation products of 4-acetopyridine, 2-acetothiophene, and 2-acetofuran reached 74%, 75%, and 63%, respectively.

  • 加载中
    1. [1]

      (1) Noyori, R.; Ohkuma, T. Pure Appl. Chem. 1999, 71, 1493.doi: 10.1351/pac199971081493

    2. [2]

      (2) Li, Y. M.; Fan, Q. H.; Chan, A. S. C. Asymmetric Organic Reactions; Chemical Industry Press: Beijing, 2003; p 57.[李月明, 范青华, 陈新滋. 不对称有机反应. 北京: 化学工业出版社, 2003: 57.]

    3. [3]

      (3) Sun, Q.;Wang, J. T.; Zhang, L. M.; Yang, M. P. Acta Phys. -Chim. Sin. 2010, 26, 2481. [孙倩, 王金婷, 张立敏,杨茂萍. 物理化学学报, 2010, 26, 2481.] doi: 10.3866/PKU.WHXB20100925

    4. [4]

      (4) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Edit. 2001, 40, 40.doi: 10.1002/1521-3773(20010105)40:1<>1.0.CO;2-6

    5. [5]

      (5) Fehring, V.; Selke, R. Angew. Chem. Int. Edit. 1998, 37, 1827.

    6. [6]

      (6) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987,109, 5551. doi: 10.1021/ja00252a056

    7. [7]

      (7) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.1995, 117, 10417. doi: 10.1021/ja00146a041

    8. [8]

      (8) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa,M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R.Angew. Chem. Int. Edit. 1998, 37, 1703.

    9. [9]

      (9) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R.J. Am. Chem. Soc. 1995, 117, 7562. doi: 10.1021/ja00133a037

    10. [10]

      (10) Hu, J.; Zhao, G.; Ding, Z. Angew. Chem. Int. Edit. 2001, 40,1109.

    11. [11]

      (11) Ohkuma, T.; Takeno, H.; Honda, Y.; Noyori, R. Adv. Synth. Catal. 2001, 343, 369.

    12. [12]

      (12) Hu, A.; Yee, G. T.; Lin,W. J. Am. Chem. Soc. 2005, 127, 12486.doi: 10.1021/ja053881o

    13. [13]

      (13) Itsuno, S.; Tsuji, A.; Takahashi, M. J. Polym. Sci. 2004, 42, 4556.

    14. [14]

      (14) Bayston, D. J.; Travers, C. B.; Polywka, M. E. C. Tetrahedron: Asymmetry 1998, 9, 2015. doi: 10.1016/S0957-4166(98)00214-6

    15. [15]

      (15) Hess, R.; Vargas, A.; Mallat, T.; Burgi, T.; Baiker, A. J. Catal.2004, 222, 117. doi: 10.1016/j.jcat.2003.10.021

    16. [16]

      (16) Marzialetti, T.; Oportus, M.; Ruiz, D.; Fierro, J. L. G.; Reyes, P.Catal. Today 2008, 133-135, 711.

    17. [17]

      (17) Jiang, H. Y.; Sun, B.; Zheng, X. X.; Chen, H. Appl. Catal. A: Gen. 2012, 421-422, 86.

    18. [18]

      (18) Jiang, H. Y.; Yang, C. F.; Li, C.; Fu, H. Y.; Chen, H.; Li, R. X.;Li, X. J. Angew. Chem. Int. Edit. 2008, 47, 9240. doi: 10.1002/anie.v47:48

    19. [19]

      (19) Yang, C. F.; Jiang, H. Y.; Feng, J.; Fu, H. Y.; Li, R. X.; Chen, H.;Li, X. J. J. Mol. Catal. A: Chem. 2009, 300, 98. doi: 10.1016/j.molcata.2008.10.041

    20. [20]

      (20) Zhang, D. L.; Yang, C. F.; Sun, Y. P.; Fu, H. Y.; Li, R. X.; Chen,H.; Li, X. J. Acta Phys. -Chim. Sin. 2010, 26, 2711. [张定林,杨朝芬, 孙亚萍, 付海燕, 李瑞祥, 陈华, 李贤均. 物理化学学报, 2010, 26, 2711.] doi: 10.3866/PKU.WHXB20101017

    21. [21]

      (21) Jiang, H. Y.; Chen, H.; Li, R. X. Catal. Commun. 2010, 11, 584.doi: 10.1016/j.catcom.2009.12.024

    22. [22]

      (22) Yang, C. F.; Yang, J.; Zhu, Y. Q.; Sun, X. D.; Li, X. J.; Chen, H.Acta Phys. -Chim. Sin. 2011, 27, 2887. [杨朝芬, 杨俊, 朱艳琴, 孙晓东, 李贤均, 陈华. 物理化学学报, 2011, 27, 2887.]doi: 10.3866/PKU.WHXB20112887

    23. [23]

      (23) Liu, D. R.; Xiong,W.; Yang, C. F.;Wang, J. B.; Chen, H.; Li, R.X.; Li, X. J. Acta Phys. -Chim. Sin. 2007, 23, 479. [刘德蓉,熊伟, 杨朝芬, 王金波, 陈华, 李瑞祥, 李贤均. 物理化学学报, 2007, 23, 479.] doi: 10.1016/S1872-1508(07)60031-X

    24. [24]

      (24) Jiang, H. Y.; Chen, H. Acta Chim. Sin. 2012, 70, 297. [蒋和雁,陈华. 化学学报, 2012, 70, 297.] doi: 10.6023/A1111141

    25. [25]

      (25) Wu, J. M.; Jiang, H. Y.; Fu, H. Y.; Chen, H.; Li, R. X.; Li, X. J.Acta Phys. -Chim. Sin. 2009, 25, 2461. [吴佳蔓, 蒋和雁, 付海燕, 陈华, 李瑞祥, 李贤均. 物理化学学报, 2009, 25, 2461.]doi: 10.3866/PKU.WHXB20091107

    26. [26]

      (26) Zhang, D. L.; Yang, C. F.; Feng, J.; Fu, H. Y.; Chen, H.; Li, R.X.; Li, X. J. Acta Phys. -Chim. Sin. 2009, 25, 2039. [张定林,杨朝芬, 冯建, 付海燕, 陈华, 李瑞祥, 李贤均. 物理化学学报, 2009, 25, 2039.] doi: 10.3866/PKU.WHXB20090935

    27. [27]

      (27) He,W.; Zhang, B. L.; Jiang, R.; Liu, P.; Sun, X. L.; Zhang, S. Y.Tetrahedron Lett. 2006, 47, 5367. doi: 10.1016/j.tetlet.2006.05.087

    28. [28]

      (28) Kovtunov, K. V.; Beck, I. E.; Bukhtiyarov, V. I.; Koptyug, I. V.Angew. Chem. Int. Edit. 2008, 47, 1492.

    29. [29]

      (29) Yan, L.; Ding, Y. J.; Zhu, H. J.; Xiong, J. M.;Wang, T.; Pan, Z.D.; Lin, L.W. J. Mol. Catal. A: Chem. 2005, 234, 1.doi: 10.1016/j.molcata.2005.01.047

    30. [30]

      (30) Liu, D. R.; Xiong,W.; Fang, G. Y.; Chen, H.; Li, R. X.; Li, X. J.Appl. Catal. A: Gen. 2008, 339, 93. doi: 10.1016/j.apcata.2008.01.012

    31. [31]

      (31) Pfaltz, A.; Heinz, T. Top. Catal. 1997, 4, 229. doi: 10.1023/A:1019104709429

    32. [32]

      (32) Blaser, H. U.; Jalett, H. P.; Lottenbach,W.; Studer, M. J. Am. Chem. Soc. 2000, 122, 12675. doi: 10.1021/ja003259q

    33. [33]

      (33) Hoxha, F.; Königsmann, L.; Vargas, A.; Ferri, D.; Mallat, T.;Baiker, A. J. Am. Chem. Soc. 2007, 129, 10582. doi: 10.1021/ja073446p

    34. [34]

      (34) Ma, H. X.; Chen, H.; Zhang, Q.; Li, X. J. J. Mol. Catal. A: Chem. 2003, 196, 131. doi: 10.1016/S1381-1169(02)00642-8

    35. [35]

      (35) Perosa, A.; Tundo, P.; Selva, M. J. Mol. Catal. A: Chem. 2002,180, 169. doi: 10.1016/S1381-1169(01)00423-X

    36. [36]

      (36) Chen, H. Y.; Hao, J. M.;Wang, H. J.; Xi, C. Y.; Meng, X. C.;Cai, S. X.; Zhao, F. Y. J. Mol. Catal. A: Chem. 2007, 278, 6.doi: 10.1016/j.molcata.2007.08.015

    37. [37]

      (37) Sheldon, R. A.;Wallau, M.; Arends, I.W. C. E.; Schuchardt, U.Accounts Chem. Res. 1998, 31, 485. doi: 10.1021/ar9700163

    38. [38]

      (38) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776.doi: 10.1021/ja0478431

    39. [39]

      (39) Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J. P.P. M.; Sowinski, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D.W.; Staudt, E. M. Organometallics 1985, 4, 1819. doi: 10.1021/om00129a023


  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(628)
  • Abstract views(848)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return