Citation: LI Jing, ZHANG Mei-Yi, PAN Gang, CHEN Hao. Influence of Adsorption Mode on Metastable-Equilibrium Adsorption of As(V) on TiO2 Particles[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1541-1549. doi: 10.3866/PKU.WHXB201304242
-
Column and batch adsorptions of As(V) on TiO2 particles were conducted to investigate the influence of adsorption mode on metastable-equilibrium adsorption. Under the same thermodynamic conditions, a fixed amount of As(V) was added to both column and batch adsorption systems. Batch adsorption achieved equilibrium more quickly than column adsorption, and the equilibrated adsorption capacity of 0.42 mg·g-1 for the batch adsorption system was considerably greater than 0.25 mg·g-1 determined for the column adsorption system. Moreover, the adsorption irreversibility of the batch adsorption system was weaker than that of the column adsorption system. This indicated that the change of adsorption reaction mode (i.e., kinetic processes) could result in different metastable-equilibrium adsorption states under the same thermodynamic conditions. The discrepancy of adsorption behavior between column and batch adsorption systems should be caused by their different liquid film diffusion coefficients and total mass transfer coefficients, as well as different microscopic metastable-equilibrium adsorption states.
-
-
[1]
(1) Yuan, T.; Luo, Q. F. Environ. Sci. 2001, 22, 25. [袁涛, 罗启芳. 环境科学, 2001, 22, 25.]
-
[2]
(2) Tang,W. S.; Li, Q.; Gao, S. A.; Shang, J. K. J. Hazard. Mater.2011, 192, 131.
-
[3]
(3) Kim, M. S.; Chung, J. G. J. Colloid Interface Sci. 2001, 233,31. doi: 10.1006/jcis.2000.7225
-
[4]
(4) Baker, H. M.; Massadeh, A. M.; Younes, H. A. Environ. Monit. Assess. 2008, 157, 319.
-
[5]
(5) Gupta, V. K.; Gupta, M.; Sharma, S. Water Res. 2001, 35, 1125.doi: 10.1016/S0043-1354(00)00389-4
-
[6]
(6) Westerhoff, P.; Highfield, D.; Badruzzaman, M.; Yoon, Y. J.Environ. Eng.-ASCE 2005, 131, 262. doi: 10.1061/(ASCE)0733-9372(2005)131:2(262)
-
[7]
(7) Nagy, M. Langmuir 1994, 10, 563. doi: 10.1021/la00014a037
-
[8]
(8) Meszaros, R.; Nagy, M.; Varga, I.; Laszlo, K. Langmuir 1999,15, 1307. doi: 10.1021/la980849h
-
[9]
(9) Zhang, M. Y. Study on Initial Concentration Effect of ArsenateAdsorption on TiO2 Surfaces. Ph. D. Dissertation, ResearchCentre for Eco-Environmental Sciences, Chinese Academy ofSciences, Beijing, 2009. [张美一. As(V)在TiO2 颗粒上吸附的初始浓度效应研究[D]. 北京: 中国科学院生态环境研究中心, 2009.]
-
[10]
(10) Pan, G.; Liss, P. S. J. Colloid Interface Sci. 1998, 201, 77. doi: 10.1006/jcis.1998.5397
-
[11]
(11) Ma, Z. C.; Pan, G.;Wei, Y.; Chen, H. Chem. J. Chin. Univ.2005, 26, 476. [马子川, 潘纲, 魏雨, 陈灏. 高等学校化学学报, 2005, 26, 476.]
-
[12]
(12) Pan, G. Acta Sci. Circum. 2003, 23, 156. [潘纲. 环境科学学报, 2003, 23, 156]
-
[13]
(13) Li, J.; Chen, H.; Pan, G.; Gao, M. Y. Acta Sci. Circum. 2006, 26,1606. [李晋, 陈灏, 潘纲, 高美媛. 环境科学学报,2006, 26, 1606.]
-
[14]
(14) He, G. Z.; Pan, G.; Zhang, M. Y.;Wu, Z. Y. J. Phys. Chem. C2009, 113, 17076. doi: 10.1021/jp9044918
-
[15]
(15) Pan, G.; He, G. Z. Physics 2009, 38, 496. [潘纲, 何广智.物理, 2009, 38, 496.]
-
[16]
(16) el, J.; Kadirvelu, K.; Raja pal, C.; Garg, V. K. J. Hazard. Mater. 2005, 125, 211. doi: 10.1016/j.jhazmat.2005.05.032
-
[17]
(17) Miller, S. M.; Spaulding, M. L.; Zimmerman, J. B. Water Res.2011, 45, 5745. doi: 10.1016/j.watres.2011.08.040
-
[18]
(18) Chadwick, M. D.; odwin, J.W.; Lawson, E. J.; Mills, P. D.A.; Vincent, B. Colloids Surf. A: Physicochem. Eng. Aspects2002, 203, 229. doi: 10.1016/S0927-7757(01)01101-3
-
[19]
(19) Gulledge, J. H.; O'Connor, J. T. J. Am. Water Works Ass. 1973,8, 548.
-
[20]
(20) Morterra, C. J. Chem. Soc. Faraday Trans. I 1988, 84, 1617.doi: 10.1039/f19888401617
-
[21]
(21) Awual, M. R.; Urata, S.; Jyo, A.; Tamada, M.; Katakai, A. Water Res. 2008, 42, 689. doi: 10.1016/j.watres.2007.08.020
-
[22]
(22) Vinodhini, V.; Das, N. Desalination 2010, 264, 9. doi: 10.1016/j.desal.2010.06.073
-
[23]
(23) Han, R. P.; Zou, L. N.; Zhao, X.; Xu, Y. F.; Xu, F.; Li, Y. L.;Wang, Y. Chem. Eng. J. 2009, 149, 123. doi: 10.1016/j.cej.2008.10.015
-
[24]
(24) Chen, S. H.; Yue, Q. Y.; Gao, B. Y.; Li, Q.; Xu, X.; Fu, K. F.Bioresour. Technol. 2011, 113, 114.
-
[25]
(25) Baral, S. S.; Das, N.; Ramulu, T. S.; Sahoo, S. K.; Das, S. N.;Chaudhury, G. R. J. Hazard. Mater. 2009, 161, 1427. doi: 10.1016/j.jhazmat.2008.04.127
-
[26]
(26) Klaus, P. R.; Amita, J.; Richard, H. L. Environ. Sci. Technol.1998, 32, 344. doi: 10.1021/es970421p
-
[27]
(27) Yan, G. Y.; Viraraghavan, T.; Chen, M. Adsorpt. Sci. Technol.2001, 19, 25. doi: 10.1260/0263617011493953
-
[28]
(28) Trivedi, H. C.; Patel, V. M.; Patel, R. D. Eur. Polym. J. 1973, 9,525. doi: 10.1016/0014-3057(73)90036-0
-
[29]
(29) Lv, L.; Zhang, Y.;Wang, K.; Ray, A. K.; Zhao, X. S. J. Colloid Interface Sci. 2008, 325, 57. doi: 10.1016/j.jcis.2008.04.067
-
[30]
(30) Pokhrel, D.; Viraraghavan, T. Bioresour. Technol. 2008, 99,2067. doi: 10.1016/j.biortech.2007.04.023
-
[31]
(31) Sontheimer, H.; Crittenden, J. C.; Summers, R. S.; Hubele, C.;Roberts, C.; Snoeyink, V. L. Activated Carbon for Water Treatment, 2nd ed.; DVGW-Forschungsstelle: Karlsruhe,Germany, 1988; pp 258-312.
-
[32]
(32) Wang, S.; Ma, Z. F.; Yao, H. Q. J. Chem. Eng. Chin. Univ. 2000,14, 65. [王晟, 马正飞, 姚虎卿. 高校化学工程学报, 2000,14, 65.]
-
[33]
(33) Kirkelund, G. M.; Ottosen, L. M.; Villumsen, A. J. Hazard. Mater. 2009, 169, 685. doi: 10.1016/j.jhazmat.2009.03.149
-
[34]
(34) Sanchez, F.; Garrabrants, A. C.; Vandecasteele, C.; MoszkowiczC, P.; Kosson, D. S. J. Hazard. Mater. B 2003, 96, 229. doi: 10.1016/S0304-3894(02)00215-7
-
[35]
(35) Badruzzaman, M.;Westerhoff, P.; Knappe, D. R. Water Res.2004, 38, 4002. doi: 10.1016/j.watres.2004.07.007
-
[36]
(36) Zhang, M. Y.; He, G. Z.; Pan, G. J. Colloid Interface Sci. 2009,338, 284.
-
[37]
(37) He, G. Z.; Pan, G.; Zhang, M. Y. J. Colloid Interface Sci. 2011,364, 476. doi: 10.1016/j.jcis.2011.08.040
-
[38]
(38) Zhang, M. Y.; He, G. Z.; Ding, C. C.; Chen, H.; Pan, G. Acta Phys. -Chim. Sin. 2009, 25, 2034. [张美一, 何广智, 丁程程,陈灏, 潘纲. 物理化学学报, 2009, 25, 2034.] doi: 10.3866/PKU.WHXB20090911
-
[1]
-
-
[1]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[2]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[3]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[4]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[7]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[8]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[9]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[10]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[11]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[12]
Suqing Shi , Anyang Li , Yuan He , Jianli Li , Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009
-
[13]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[14]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[15]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[16]
Chengxia Tong , Yajie Li , Jin Yan , Xuejian Qu , Shigang Wei , Yong Fan , Zhiguang Song , Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155
-
[17]
Junlin Yan , Changhao Wang , Quanguo Zhai , Chenghui Liu , Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005
-
[18]
Weizhou Jiao , Zhiwei Liu , Chao Zhang , Zhiguo Yuan , Guisheng Qi , Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011
-
[19]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[20]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[1]
Metrics
- PDF Downloads(550)
- Abstract views(722)
- HTML views(3)