Citation: WEI Mei-Ju, JIA De-Qiang, CHEN Fei-Wu. Geometric Structures, Excitation Energies and Dipole Moments of the Ground and Excited States of TiO2[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1441-1452. doi: 10.3866/PKU.WHXB201304221
-
The geometries of the ground and excited states of titanium dioxide, 1A1, 1B2, 3B2, 1B1, 3B1, 1A2 and 3A2, have been optimized using Møller-Plesset second-order perturbation theory, density functional theory B3LYP, and time-dependent density functional theory TD-B3LYP methods. 1A1, 1B2, 3B2, 1B1 and 3B1 have bent structures, while 1A2 and 3A2 have symmetrical linear structures. The bond angles of 1B2, 3B2, 1B1 and 3B1 correlate directly with the magnitudes of the corresponding bond dipole moments. Vertical and adiabatic excitation energies have been computed with complete active space self-consistent field (CASSCF) CASSCF(6,6), CASSCF(8,8), multi-reference configuration interaction (MRCI), and TD-B3LYP. For 1B2、3B2 and 1B1, the excitation energies calculated with MRCI/CASSCF(6,6) are much closer to the experimental values than the results calculated using other methods. For excited states 3B1, 1A2 and 3A2, excitation energies calculated with CASSCF(6,6), CASSCF(8,8), MRCI, and TD-B3LYP are almost consistent with theoretical results available in the literature. Dipole moments of the ground and excited states have been computed with B3LYP and TD-B3LYP. The calculated dipole moments of 1A1 and 1B2 agree well with experimental data. The atomic charges of TiO2 in ground and excited states have been calculated with the atomic dipole moment corrected Hirshfeld population method. This calculation revealed that changes of dipole moments from the ground state to the excited states are related to electron transfer from the oxygen atom to the titanium atom. During the above calculations, the influences of the basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ were also investigated.
-
-
[1]
(1) Fujishima, A; Honda, K. Nature 1972, 37, 238.
-
[2]
(2) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
-
[3]
(3) Kubacka, A.; Fernández-García, M.; Colón, G. Chem. Rev.2012, 112, 1555. doi: 10.1021/cr100454n
-
[4]
(4) Youngblood,W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E.Accounts Chem. Res. 2009, 42 (12), 1966. doi: 10.1021/ar9002398
-
[5]
(5) Qian, D. F.; Zhang, Q. H.;Wan, J.; Li, Y. G.;Wang, H. Z. Acta Phys. -Chim. Sin. 2010, 26 (10), 2745. [钱迪峰, 张青红,万钧, 李耀刚, 王宏志. 物理化学学报, 2010, 26 (10), 2745.]doi: 10.3866/PKU.WHXB20100948
-
[6]
(6) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012,112, 5919. doi: 10.1021/cr3002092
-
[7]
(7) Shen,W. R.; Zhao,W. K.; He, F.; Fang, Y. L. Progress in Chemistry 1998, 10 (4), 349. [沈伟韧, 赵文宽, 贺飞, 方佑龄. 化学进展, 1998, 10 (4), 349.]
-
[8]
(8) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k
-
[9]
(9) Yan, B. X.; Luo, S. Y.; Shen, J. Acta Phys. -Chim. Sin. 2012, 28 (2), 381. [颜秉熙, 罗胜耘, 沈杰. 物理化学学报, 2012, 28 (2), 381.] doi: 10.3866/PKU.WHXB201112123
-
[10]
(10) Grein, F. J. Chem. Phys. 2007, 126, 034313. doi: 10.1063/1.2429062
-
[11]
(11) Taylor, D. J.; Paterson, M. J. J. Chem. Phys. 2010, 133, 204302.doi: 10.1063/1.3515477
-
[12]
(12) Kaufman, M.; Muenter, J.; Klemperer,W. J. Chem. Phys. 1965,47, 3365.
-
[13]
(13) McIntyre, N. S.; Thompson, K. R.;Weltner,W. J. Phys. Chem.1971, 75, 3243.
-
[14]
(14) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.doi: 10.1021/j100017a015
-
[15]
(15) Brünken, S.; Müller, H. S. P.; Menten, K. M.; McCarthy, M. C.;Thaddeus, P. A. Astrophys. J. 2008, 676, 1367. doi: 10.1086/523316
-
[16]
(16) Wang, H.; Steimle, T. C.; Apetrei, C.; Maier, J. P. Phys. Chem. Chem. Phys. 2009, 11, 2649. doi: 10.1039/b821849h
-
[17]
(17) Zhuang, X.; Le, A.; Steimle, T. C.; Nagarajan, R.; Gupta, V.;Maier, J. P. Phys. Chem. Chem. Phys. 2010, 12, 15018. doi: 10.1039/c0cp00861c
-
[18]
(18) Wu, H.;Wang, L. S. J. Chem. Phys. 1997, 107, 8221. doi: 10.1063/1.475026
-
[19]
(19) Garkusha, I.; Nagy, A.; Guennoun, Z.; Maier, J. P. Chem. Phys.2008, 353, 115. doi: 10.1016/j.chemphys.2008.08.003
-
[20]
(20) Ramana, M. V.; Phillips, D. H. J. Chem. Phys. 1988, 88, 2637.doi: 10.1063/1.454716
-
[21]
(21) Hagfeldt, A.; Bergström, R.; Siegbahn, H. O. G.; Lunell, S.J. Phys. Chem. 1993, 97, 12725. doi: 10.1021/j100151a016
-
[22]
(22) Bergström, R.; Lunell, S.; Eriksson, L. A. Int. J. Quantum Chem. 1996, 59, 427.
-
[23]
(23) Walsh, M. B.; King, R.; Schaefer, H. F. J. Chem. Phys. 1999,110, 5224. doi: 10.1063/1.478418
-
[24]
(24) Albaret, T.; Finocchi, F.; Noguera, C. J. Chem. Phys. 2000, 113,2238. doi: 10.1063/1.482038
-
[25]
(25) Qu, Z.W.; Kroes, G. J. J. Phys. Chem. B 2006, 110, 8998. doi: 10.1021/jp056607p
-
[26]
(26) Li, S.; Dixon, D. A. J. Phys. Chem. A 2008, 112, 6646. doi: 10.1021/jp800170q
-
[27]
(27) Liu, Y.; Yuan, Y.;Wang, Z.; Deng, K.; Xiao, C.; Li, Q. J. Chem. Phys. 2009, 130, 174308. doi: 10.1063/1.3126776
-
[28]
(28) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
-
[29]
(29) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.1992, 96, 6796. doi: 10.1063/1.462569
-
[30]
(30) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
-
[31]
(31) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. doi: 10.1103/PhysRev.46.618
-
[32]
(32) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[33]
(33) Lee, C.; Yang,W.; Parr, G. R. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[34]
(34) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h
-
[35]
(35) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.1998, 109, 8218. doi: 10.1063/1.477483
-
[36]
(36) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,454. doi: 10.1016/0009-2614(96)00440-X
-
[37]
(37) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R.J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.475855
-
[38]
(38) Foresman, J. B.; Head- rdon, M.; Pople, J. A.; Frisch, M. J.J. Phys. Chem.1992, 96, 135. doi: 10.1021/j100180a030
-
[39]
(39) Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795. doi: 10.1080/00268977900102871
-
[40]
(40) Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel,H. B. Chem. Phys. Lett. 1996, 250, 373. doi: 10.1016/0009-2614(96)00027-9M
-
[41]
(41) Werner, H. J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.doi: 10.1063/1.455556
-
[42]
(42) Knowles, P. J.;Werner, H. J. Chem. Phys. Lett. 1988, 145, 514.doi: 10.1016/0009-2614(88)87412-8
-
[43]
(43) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03 W, Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[44]
(44) Wemer, H. J.; Knowles, P. J.; Lindh, R.; MAnby, F. R.; Schütz,M. et al. Molpro, 2009.1; a Package of ab initio Programs. seehttp://www.molpro.net.
-
[45]
(45) Lu, T.; Chen, F.W. J. Thero. Comput. Chem. 2012, 11 (1), 163.doi: 10.1142/S0219633612500113
-
[46]
(46) Lu, T.; Chen, F.W. Acta Phys. -Chim. Sin. 2012, 28 (1), 1.[卢天, 陈飞武. 物理化学学报, 2012, 28 (1), 1.] doi: 10.1142/10.3866/PKU.WHXB2012281
-
[47]
(47) Lu, T.; Chen, F.W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[48]
(48) http://Multiwfn.codeplex.com.
-
[1]
-
-
[1]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[2]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[7]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[8]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[9]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[10]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[11]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[14]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[17]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[18]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[19]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[20]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[1]
Metrics
- PDF Downloads(754)
- Abstract views(986)
- HTML views(62)