Citation:
GUO Li-Mei, KUANG Yuan-Jiang, YANG Xiao-Dan, YU Yan-Long, YAO Jiang-Hong, CAO Ya-An. Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst[J]. Acta Physico-Chimica Sinica,
;2013, 29(07): 1558-1565.
doi:
10.3866/PKU.WHXB201304161
-
An SrB2O4/SrCO3composite catalyst is synthesized by the simple sol-gel method. Reduction of carbon dioxide into methane in the presence of water is used to evaluate the photocatalytic activity of the composite catalyst. SrB2O4/SrCO3exhibits better photocatalytic performance than TiO2(P25) and SrB2O4 under irradiation with UV light. The crystalline structure, crystallite size, and the BET surface areas of the resultant photocatalysts are studied via the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The energy levels of the SrB2O4/SrCO3 photocatalyst are determined from characterization with UV-Vis diffuse reflectance absorption spectra, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) measurements. The heterojunction formed at the SrB2O4/SrCO3interface efficiently promotes photogenerated carrier separation and increases the use of photogenerated carriers in photocatalytic reactions at the solid/liquid interface, resulting in high photocatalytic activity under UV light.
-
-
-
[1]
(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979,277, 637.
-
[2]
(2) Tseng, I. H.;Wu, J. C.; Chou, H. Y. J. Catal. 2004, 221, 432.doi: 10.1016/j.jcat.2003.09.002
-
[3]
(3) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H.; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
-
[4]
(4) Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.;Wang, Z.; Ma, L. L.Carbon 2007, 45, 717. doi: 10.1016/j.carbon.2006.11.028
-
[5]
(5) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[6]
(6) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang,M. H.; Whangbo, M. H. Catal. Commun. 2009, 11, 210. doi: 10.1016/j.catcom.2009.10.010
-
[7]
(7) Yang, C. C.; Yu, Y. H.; Linden, B. V. D.;Wu, J. C. S.; Mul, G.J. Am. Chem. Soc. 2010, 132, 8398. doi: 10.1021/ja101318k
-
[8]
(8) Tan, S. S.; Zou, L.; Hu, E. Sci. Technol. Adv. Mater. 2007, 9, 89.
-
[9]
(9) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
-
[10]
(10) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105,8350. doi: 10.1021/jp010885g
-
[11]
(11) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
-
[12]
(12) Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. J. Electroanal. Chem. 1995, 396, 21. doi: 10.1016/0022-0728(95)04141-A
-
[13]
(13) Adachi, K.; Ohta, K.; Mizuna, T. Sol. Energy 1994, 53, 187. doi: 10.1016/0038-092X(94)90480-4
-
[14]
(14) Tan, S. S.; Zou, L.; Hu, E. Catal. Today 2006, 115, 269. doi: 10.1016/j.cattod.2006.02.057
-
[15]
(15) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006
-
[16]
(16) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
-
[17]
(17) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan,X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angew. Chem. 2010, 122, 6544. doi: 10.1002/ange.201003270
-
[18]
(18) Guo, L. M.; Kuang, Y. J.; Yang, X. D.; Yu, Y. L.; Yao, J. H.;Cao, Y. A. Acta Phys. -Chim. Sin. 2013, 29, 397. [郭丽梅, 匡元江, 杨晓丹, 于彦龙, 姚江宏, 曹亚安. 物理化学学报, 2013,29, 397.] doi: 10.3866/PKU.WHXB201211161
-
[19]
(19) Song, L. M.; Zhang, S. J.; Chen, B. Catal. Commun. 2009, 10,1565. doi: 10.1016/j.catcom.2009.03.022
-
[20]
(20) Li, R.; Bao, L. H.; Li, X. D. Cryst. Eng. Commum. 2011, 13,5858. doi: 10.1039/c1ce05537b
-
[21]
(21) Cao, Y. Q.; He, T.; Chen, Y. M.; Cao, Y. A. J. Phys. Chem. C2010, 114, 3627. doi: 10.1021/jp100786x
-
[22]
(22) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[23]
(23) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem.1995, 99, 16655. doi: 10.1021/j100045a027
-
[24]
(24) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Lu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v
-
[25]
(25) Saraf, L. V.; Patil, S. I.; Ogale, S. B. Int. J. Mod. Phys. B 1998,12, 2635. doi: 10.1142/S0217979298001538
-
[26]
(26) Yuan, J. X.;Wu, Q.; Zhang, P.; Yao, J. H.; He, T.; Cao, Y. A.Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
-
[27]
(27) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2588. doi: 10.1021/cm049100k
-
[28]
(28) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[29]
(29) Izumi, Y. Coord. Chem. Rev. 2012, 10, 1016.
-
[1]
-
-
-
[1]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[2]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[5]
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
-
[6]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[9]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[10]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[13]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[14]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[15]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[16]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[17]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(838)
- Abstract views(1108)
- HTML views(48)