Citation: YAO Tong, ZHONG Bei-Jing. Small-Scale Chemical Kinetic Mechanism Models for Pyrolysis of n-Decane[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1385-1395. doi: 10.3866/PKU.WHXB201304123 shu

Small-Scale Chemical Kinetic Mechanism Models for Pyrolysis of n-Decane

  • Received Date: 26 February 2013
    Available Online: 12 April 2013

    Fund Project: 国家自然科学基金(51036004)资助项目 (51036004)

  • n-Decane is a component of commonly used fuels, but so far studies into its pyrolysis mechanism are rare and the few existing mechanisms are inconvenient to use owing to their large scales. A small-scale chemical kinetic model (Mech33) for describing the process of n-decane pyrolysis containing 33 species and 75 elementary reactions was constructed. Based on partial equilibrium and quasi-steady state assumptions through sensitivity analysis, a smaller kinetic model (Mech22) containing 22 species and 59 reactions was developed from Mech33. Simulations of n-decane pyrolysis using these two models were compared with experimental data from flow reactor and shock tube over a wide range of temperatures and pressures. The results showed that Mech33 and Mech22 could reproduce the process of n-decane pyrolysis well and accurately predict the concentrations profile of main products, and finally provide valuable chemical kinetic models for engineering simulations when coupled with computational fluid dynamics (CFD).

  • 加载中
    1. [1]

      (1) Emeric, D.; Marc, B.; Olivier, H.; Marie, P. M.; Gascoin, N.;Gillard, P. Fuel Reforming for Scramjet Thermal Managementand Combustion Optimization. AIAA/CIRA 13th InternationalSpace Planes and Hypersonics Systems and TechnologiesConference, Capua, Italy, May 16-20, 2005.

    2. [2]

      (2) Falempin, F.; Bouchez, M.; Salmon, T.; Lespade, P.; Avrashkov,V. An Innovative Technology for Fuel-Cooled CompositeMaterials Structure. AIAA/NAL-NASDA-ISAS 10thInternational Space Planes and Hypersonic Systems andTechnologies Conference, Kyoto, Japan, April 24-27, 2001.

    3. [3]

      (3) Emeric, D.; Marc, B.; Roda, B.; Battin, F. L.; Marie, P. M.;René, F. Contribution to Scramjet Active Cooling AnalysisUsing N-dodecane Decomposition Model. 12th AIAAInternational Space Planes and Hypersonic Systems andTechnologies Conference, Norfolk, Virginia, America,December 15-19, 2003.

    4. [4]

      (4) Huang, H.; Sobel, D. R.; Spadaccini, L. J. EndothermicHeat-Sink of Hydrocarbon Fuels for Scramjet Cooling. 38thAIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit, Indianapolis, Indiana, America, July 7-11, 2002.

    5. [5]

      (5) Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M. Symp. Int. Combust. 1994, 25 (1), 919. doi: 10.1016/S0082-0784(06)80727-7

    6. [6]

      (6) Dagaut, P.; Bakali, E. A.; Ristori, A. Fuel 2006, 85 (7-8), 944.

    7. [7]

      (7) Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.;Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31 (1), 393.doi: 10.1016/j.proci.2006.08.008

    8. [8]

      (8) Yu, J.; Eser, S. Ind. Eng. Chem. Res. 1997, 36 (3), 585. doi: 10.1021/ie9603934

    9. [9]

      (9) Jiao, Y.; Li, J.;Wang, J. B.;Wang, J. L.; Zhu, Q.; Chen, Y. Q.;Li, X. Y. Acta Phys. -Chim. Sin. 2011, 27, 1061. [焦毅,李军, 王静波, 王健礼, 朱权, 陈耀强, 李象远. 物理化学学报, 2011, 27, 1061.] doi: 10.3866/PKU.WHXB20110437

    10. [10]

      (10) Zeppieri, S. P.; Klotz, S. D.; Dryer, F. L. Proc. Combust. Inst.2000, 28 (2), 1587. doi: 10.1016/S0082-0784(00)80556-1

    11. [11]

      (11) Zhao, Z.W.; Li, J.; Kazakov, A.; Dryer, F. L.; Zeppieri, S. P.Combust. Sci. Tech. 2005, 177 (1), 89.

    12. [12]

      (12) Westbrook, C. K.; Pitz,W. J.; Herbinet, O.; Curran, H. J.; Silke,E. J. Combust. Flame 2009, 156 (1), 181. doi: 10.1016/j.combustflame.2008.07.014

    13. [13]

      (13) You, X.; E lfopoulos, F. N.;Wang, H. Proc. Combust. Inst.2009, 32 (1), 403. doi: 10.1016/j.proci.2008.06.041

    14. [14]

      (14) Zhou, P.; Hollis, O. L.; Crynes, B. L. Ind. Eng. Chem. Res.1987, 26 (4), 846. doi: 10.1021/ie00064a038

    15. [15]

      (15) Herbinet, O.; Marquaire, P. M.; Battin-Leclerc, F.; Fournet, R.J. Anal. Appl. Pyrol. 2007, 78 (2), 419. doi: 10.1016/j.jaap.2006.10.010

    16. [16]

      (16) Dahm, K. D.; Virk, P. S.; Bounaceur, R.; Battin-Leclerc, F.;Marquaire, P. M.; Fournet, R.; Daniau, E.; Bouchez, M. J. Anal. Appl. Pyrol. 2004, 71 (2), 865. doi: 10.1016/j.jaap.2003.11.005

    17. [17]

      (17) Malewicki, T.; Brezinsky, K. Proc. Combust. Inst. 2013, 34 (1),361. doi: 10.1016/j.proci.2012.06.156

    18. [18]

      (18) Dagaut, P.; Cathonnet, M.; Boettner, J. C.; Gaillard, F. Combust. Flame 1988, 71 (3), 295. doi: 10.1016/0010-2180(88)90065-X

    19. [19]

      (19) Petrova, M. V.;Williams, F. A. Combust. Flame 2006, 144 (3),526. doi: 10.1016/j.combustflame.2005.07.016

    20. [20]

      (20) Coffee, T. P. Combust. Flame 1984, 55 (2), 161. doi: 10.1016/0010-2180(84)90024-5

    21. [21]

      (21) Bikas, G.; Peters, N. Combust. Flame 2001, 126 (1-2), 1456.

    22. [22]

      (22) Honnet, S.; Seshadri, K.; Peters, N. Surrogate Fuel forKerosene. http://www.itv.rwth-aachen.de/fileadmin/downloads/.(accessed Oct 27, 2011)

    23. [23]

      (23) Olchanski, E.; Burcat, A. Int. J. Chem. Kinet. 2006, 38 (12),703.

    24. [24]

      (24) Ranzi, E.; Frassoldati, A.; Granata, S.; Faravelli, T. Ind. Eng. Chem. Res. 2004, 44 (14), 5170.

    25. [25]

      (25) Battin-Leclerc, F.; Fournet, R.; Glaude, P.; Judenherc, B.;Warth,V.; Côme, G.; Scacchi, G. Proc. Combust. Inst. 2000, 28 (2),1597. doi: 10.1016/S0082-0784(00)80557-3

    26. [26]

      (26) Lindstedt, R.; Maurice, L. J. Prop. Power 2000, 16 (2), 187.doi: 10.2514/2.5582

    27. [27]

      (27) Kossiakoff, A.; Rice, F. O. J. Am. Chem. Soc. 1943, 65 (4), 590.doi: 10.1021/ja01244a028

    28. [28]

      (28) Chakir, A.; Bellimam, M.; Boettner, J. C.; Cathonnet, M. Int. J. Chem. Kinet. 1992, 24 (4), 385.

    29. [29]

      (29) Tamura, T. High-Temperature Reaction Rates for Five- andSix-Carbon Saturated Alkanes. Lawrence Livermore NationalLab, Report, 1987.

    30. [30]

      (30) Yao, T.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (2), 237.[姚通, 钟北京. 物理化学学报, 2013, 29 (2), 237.]doi: 10.3866/PKU.WHXB201211271

    31. [31]

      (31) Held, T. J.; Marchese, A. J.; Dryer, F. L. Combust. Sci. Tech.1997, 123 (6), 107. doi: 10.1080/00102209708935624

    32. [32]

      (32) Zhang, Y. P.; Zhong, B. J. J. Tsinghua Univ. (Sci. Tech.) 2008,48 (5), 904. [张云鹏, 钟北京. 清华大学学报: 自然科学版,2008, 48 (5), 904.]

    33. [33]

      (33) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKIN Release4.1; Reaction Design: San Die , CA, 2006.

    34. [34]

      (34) Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y.Acta Chim. Sin. 2010, 68 (3), 239. [李军, 邵菊香, 刘存喜,饶含兵, 李泽荣, 李象远. 化学学报, 2010, 68 (3), 239.]

    35. [35]

      (35) Rabitz, H.; Kramer, M.; Dacol, D. Annu. Rev. Phys. Chem.1983, 34 (1), 419. doi: 10.1146/annurev.pc.34.100183.002223


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(631)
  • Abstract views(769)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return