Citation: ZHOU Yang, LIU Wei-Ming, HU Xian-Chao, CHU You-Qun, MA Chun-An. Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1487-1493. doi: 10.3866/PKU.WHXB201304121
-
Nano-WO3 modified carbon nanotube supported Pt nanoparticles (Pt/WO3-CNTs) with uniform dimension were prepared by impregnated precipitation method, and Pt nanoparticles were loaded on the surface of WO3-CNTs by means of microwave-assisted glycol method. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Pt nanoparticles have a face-centered cubic crystal structure and are highly dispersed on the surface of WO3-modified CNTs with a narrow size distribution between 3 and 5 nm. X-ray photoelectron spectroscopy (XPS) shows that more metallic Pt is present on Pt/ WO3-CNTs than on Pt/CNTs catalyst. Compared with the Pt/CNTs catalyst without WO3 modification, the Pt/ WO3-CNTs composite catalyst not only shows relative large electrochemical active surface area, high catalyst activity toward methanol electro-oxidation, but also exhibits very high stability with apparent antiposion tolerance to the incomplete oxidized species during methanol oxidation.
-
-
[1]
(1) Jung, E. H.; Jung, U. H.; Yang, T. H.; Peak, D. H.; Jung, D. H.;Kim, S. H. International Journal of Hydrogen Energy 2007, 32,903. doi: 10.1016/j.ijhydene.2006.12.014
-
[2]
(2) Li, X.; Chen, J. L.; Zhu, Z. H.; De Marco, R.; Bradley, J.; Dicks,A. Energy & Fuels 2009, 23, 3721. doi: 10.1021/ef900203h
-
[3]
(3) Han, D. M.; Guo, Z. P.; Zeng, R.; Kim, C. J.; Meng, Y. Z.; Liu,H. K. International Journal of Hydrogen Energy 2009, 34,2426. doi: 10.1016/j.ijhydene.2008.12.073
-
[4]
(4) Corpuz, A. R.; Olson, T. S.; Joghee, P.; Pylypenko, S.;Dameron, A. A.; Dinh, H. N.; O'Neill, K. J.; Hurst, K. E.;Bender, G.; Gennett, T.; Pivovar, B. S.; Richards, R. M.;O'Hayre, R. P. Journal of Power Sources 2012, 217, 142. doi: 10.1016/j.jpowsour.2012.06.012
-
[5]
(5) Kakati, N.; Lee, S. H.; Maiti, J.; Yoon, Y. S. Surface Science2012, 606, 1633. doi: 10.1016/j.susc.2012.07.008
-
[6]
(6) Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P.Journal of Power Sources 2012, 203, 17. doi: 10.1016/j.jpowsour.2011.11.025
-
[7]
(7) Remona, A. M.; Phani, K. L. N. Journal of Fuel Cell Science and Technology 2011, 8, 011001.
-
[8]
(8) Chu, Y. H.; Shul, Y. G. International Journal of Hydrogen Energy 2010, 35, 11261. doi: 10.1016/j.ijhydene.2010.07.062
-
[9]
(9) Wu, G.; Swaidan, R.; Cui, G. F. Journal of Power Sources 2007,172, 180. doi: 10.1016/j.jpowsour.2007.07.034
-
[10]
(10) Chung, Y. S.; Pak, C.; Park, G. S.; Jeon,W. S.; Kim, J. R.; Lee,Y.; Chang, H.; Seung, D. Journal of Physical Chemistry C 2008,112, 313. doi: 10.1021/jp0759372
-
[11]
(11) Piela, P.; Eickes, C.; Brosha, E.; Garzon, F.; Zelenay, P. Journal of the Electrochemical Society 2004, 151, A2053.
-
[12]
(12) Profeti, L. P. R.; Profeti, D.; Olivi, P. International Journal of Hydrogen Energy 2009, 34, 2747. doi: 10.1016/j.ijhydene.2009.01.011
-
[13]
(13) Zhou, C. M.;Wang, H. J.; Liang, J. H.; Peng, F.; Yu, H.; Yang, J.Chinese Journal of Catalysis 2008, 29, 1093. doi: 10.1016/S1872-2067(09)60007-3
-
[14]
(14) Frolova, L. A.; Dobrovolsky, Y. A. Russian Chemical Bulletin2011, 60, 1101. doi: 10.1007/s11172-011-0174-z
-
[15]
(15) Guo, D. J.; You, J. M. Journal of Power Sources 2012, 198, 127.doi: 10.1016/j.jpowsour.2011.10.017
-
[16]
(16) Xu, M.W.; Gao, G. Y.; Zhou,W. J.; Zhang, K. F.; Li, H. L.Journal of Power Sources 2008, 175, 217. doi: 10.1016/j.jpowsour.2007.09.069
-
[17]
(17) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of the Electrochemical Society 1995, 142, L85.
-
[18]
(18) Shen, P. K.; Tseung, A. C. C. Journal of the Electrochemical Society 1994, 141, 3082. doi: 10.1149/1.2059282
-
[19]
(19) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of the Chemical Society-Faraday Transactions 1994, 90, 3089. doi: 10.1039/ft9949003089
-
[20]
(20) Cui, X. Z.; Shi, J. L.; Chen, H. R.; Zhang, L. X.; Guo, L. M.;Gao, J. H.; Li, J. B. Journal of Physical Chemistry B 2008, 112,12024.
-
[21]
(21) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W.Journal of Physical Chemistry B 2005, 109, 22958. doi: 10.1021/jp053053h
-
[22]
(22) Zhang, D. Y.; Ma, Z. F.;Wang, G. X.; Konstantinov, K.; Yuan,X. X.; Liu, H. K. Electrochemical and Solid State Letters 2006,9, A423.
-
[23]
(23) Chen, K. Y.; Shen, P. K.; Tseung, A. C. C. Journal of the Electrochemical Society 1995, 142, L185.
-
[24]
(24) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of Electroanalytical Chemistry 1995, 389, 223. doi: 10.1016/0022-0728(95)03974-L
-
[25]
(25) Yang, C. Z.; van der Laak, N. K.; Chan, K. Y.; Zhang, X.Electrochimica Acta 2012, 75, 262. doi: 10.1016/j.electacta.2012.04.107
-
[26]
(26) Cui, Z. M.; Feng, L. G.; Liu, C. P.; Xing,W. Journal of Power Sources 2011, 196, 2621. doi: 10.1016/j.jpowsour.2010.08.118
-
[27]
(27) Rajesh, B.; Karthik, V.; Karthikeyan, S.; Thampi, K. R.; Bonard,J. M.; Viswanathan, B. Fuel 2002, 81, 2177. doi: 10.1016/S0016-2361(02)00162-X
-
[28]
(28) Sheng, J. F.; Ma, C. A.; Zhang, C.; Li, G. H. Acta Physico- Chimica Sinica 2007, 23, 181. [盛江峰, 马淳安, 张诚, 李国华. 物理化学学报, 2007, 23, 181.] doi: 10.3866/PKU.WHXB20070209
-
[29]
(29) Rajeswari, J.; Viswanathan, B.; Varadarajan, T. K. Materials Chemistry and Physics 2007, 106, 168. doi: 10.1016/j.matchemphys.2007.05.032
-
[30]
(30) Ahmadi, R.; Amini, M. K. International Journal of Hydrogen Energy 2011, 36, 7275. doi: 10.1016/j.ijhydene.2011.03.013
-
[31]
(31) Raghuveer, V.; Viswanathan, B. Journal of Power Sources 2005,144, 1. doi: 10.1016/j.jpowsour.2004.11.033
-
[32]
(32) Su, F. B.; Poh, C. K.; Tian, Z. G.; Xu, G.W.; Koh, G. Y.;Wang,Z.; Liu, Z. L.; Lin, J. Y. Energy & Fuels 2010, 24, 3727. doi: 10.1021/ef901275q
-
[33]
(33) Park, K.W.; Choi, J. H.; Sung, Y. E. Journal of Physical Chemistry B 2003, 107, 5851. doi: 10.1021/jp0340966
-
[34]
(34) Tseung, A. C. C.; Chen, K. Y. Catalysis Today 1997, 38, 439.doi: 10.1016/S0920-5861(97)00053-9
-
[35]
(35) Ye, J. L.; Liu, J. G.; Zou, Z. G.; Gu, J.; Yu, T. Journal of Power Sources 2010, 195, 2633. doi: 10.1016/j.jpowsour.2009.11.055
-
[1]
-
-
[1]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[10]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[11]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[12]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[13]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[16]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[17]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[18]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[19]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[20]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[1]
Metrics
- PDF Downloads(631)
- Abstract views(1108)
- HTML views(58)