Citation: SUN Xiao-Ran, LI Guang-Yue, XIA Ding-Guo, ZHANG Li-Mei, LI Fan. Oxygen-Reduction Reaction of Pyromellitimide-Bridged Polyphthalocyanine Fe(II)[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1461-1466. doi: 10.3866/PKU.WHXB201304081 shu

Oxygen-Reduction Reaction of Pyromellitimide-Bridged Polyphthalocyanine Fe(II)

  • Received Date: 18 January 2013
    Available Online: 8 April 2013

    Fund Project: 国家自然科学基金(11247281) (11247281) 北京市自然科学基金(2120001) (2120001)河北省优秀青年基金(Y2012010)资助项目 (Y2012010)

  • The activity of a pyromellitimide-bridged polyphthalocyanine Fe(II) catalyst for O2 reduction is studied by density functional theory calculations. Three model molecules with different polymerization degrees are designed to investigate O2-reduction electrocatalytic reactivity. The molecular and electronic structures of the models and their O2-complexes are optimized with BP86 functional and SVP basis sets. The central Fe atom in the catalyst binds O2 by a double bond followed by a charge transfer to reduce O2. This study indicates that the catalyst has potential for O2-reduction electrocatalytic activity. The calculated frontier molecular orbitals and stabilities of the O2-complexes demonstrate that catalysts with a higher polymerization degree and stronger electron-withdrawing groups will have higher activities for O2 reduction. O2-reduction activity of the catalyst is achieved via an electrocatalytic cycle.

  • 加载中
    1. [1]

      (1) Phthalocyanines-Properties and Applications; Leznoff, C. C.,Lever, A. B. P. Eds.; VCH: New York, 1989-1996.

    2. [2]

      (2) McKeown, N. B. Phthalocyanine Materials-Synthesis, Structureand Function; Cambridge University Press: Cambridge, 1998.

    3. [3]

      (3) The Porphyrin Handbook; Kadish, K., Smith, K. M., Guilard, R.Eds.; Academic Press: San Die , 2003; Vols. 15-20.

    4. [4]

      (4) de la Torre, G.; Vasquez, P.; Agulló-López, F. Adv. Mater. 1997,9, 265.

    5. [5]

      (5) Simon, J.; Sirlin, C. Pure Appl. Chem. 1989, 61, 1625. doi: 10.1351/pac198961091625

    6. [6]

      (6) Humberstone, P.; Clarkson, G. J.; McKeown, N. B.; Treacher,K. E. J. Mater. Chem. 1996, 6, 315. doi: 10.1039/jm9960600315

    7. [7]

      (7) Dini, D.; Hanack, M. Physical Properties of 107Phthalocyanine-Based Materials. In The Porphyrin Handbook,Volumes 11-20: Phthalocyanines: Properties and Materials;Academic Press: San Die , 2003; Vol. 17, p 1.

    8. [8]

      (8) Lever, A. B. P.; Hempstead, M. R.; Leznoff, C. C.; Liu,W.;Melnik, M.; Nevin,W. A.; Seymour, P. Pure Appl. Chem. 1986,58, 1467. doi: 10.1351/pac198658111467

    9. [9]

      (9) Sirotin, S. V.; Tolbin, A. Y.; Moskovskaya, I. F.; Abramchuk, S.S.; Tomilova, L. G.; Romanovsky, B. V. J. Mol. Cat. A: Chem.2010, 319, 39. doi: 10.1016/j.molcata.2009.11.017

    10. [10]

      (10) Han, K. L.; He, G. Z. J. Photochem. Photobiol. C 2007, 8, 55.doi: 10.1016/j.jphotochemrev.2007.03.002

    11. [11]

      (11) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 2469. doi: 10.1021/jp068420j

    12. [12]

      (12) Zhao, G. J.; Han, K. L. Biophys. J. 2008, 94, 38. doi: 10.1529/biophysj.107.113738

    13. [13]

      (13) Yu, F. B.; Li, P.; Li, G. Y.; Zhao, G. J.; Chu, T. S.; Han, K. L.J. Am. Chem. Soc. 2011, 133, 11030. doi: 10.1021/ja202582x

    14. [14]

      (14) Li, G. Y.; Zhao, G. J.; Liu, Y. H.; Han, K. L.; He, G. Z.J. Comput. Chem. 2010, 31, 1759.

    15. [15]

      (15) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h

    16. [16]

      (16) Li, G. Y.; Chu, T. S. Phys. Chem. Chem. Phys. 2011, 13, 20766.doi: 10.1039/c1cp21470e

    17. [17]

      (17) Li, G. Y.; Zhao, G. J.; Han, K. L.; He, G. Z. J. Comput. Chem.2011, 32, 668. doi: 10.1002/jcc.v32.4

    18. [18]

      (18) Neese, F. ORCA-an Ab initio, Density Functional andSemiempirical Program Package; 2008. http://www.thch.uni-bonn.de/tc/orca/

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    20. [20]

      (20) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    21. [21]

      (21) Himo, F.; Siegbahn, P. E. M. Chem. Rev. 2003, 103, 2421. doi: 10.1021/cr020436s

    22. [22]

      (22) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346.

    23. [23]

      (23) Zhong, A. G.; Huang, L.; Jiang, H. J. Acta Phys. -Chim. Sin.2011, 27, 837. [钟爱国, 黄凌, 蒋华江. 物理化学学报,2011, 27, 837.] doi: 10.3866/PKU.WHXB20110323

    24. [24]

      (24) Schneider, S. K.; Julius, G. R.; Loschen, C.; Raubenheimer, H.G.; Frenking, G.; Herrmann,W. A. Dalton Trans. 2006, 1226.

    25. [25]

      (25) http://www.ccl.net/cca/software/SOURCES/FORTRAN/nbo/index.shtml

    26. [26]

      (26) Zheng,W. R.; Xu, J. L.; Xiong, R. Acta Phys. -Chim. Sin. 2010,26, 2535. [郑文锐, 徐菁利, 熊瑞. 物理化学学报, 2010,26, 2535.] doi: 10.3866/PKU.WHXB20100931

    27. [27]

      (27) Chen, X.; Li, F.;Wang, X. Y.; Sun, S. R.; Xia, D. G. J. Phys.Chem. C 2012, 116, 12553. doi: 10.1021/jp300638e

    28. [28]

      (28) Favia, A. D.; Cavalli, A.; Masetti, M.; Carotti, A.; Recanatini,M. Proteins 2006, 62, 1074.

    29. [29]

      (29) Zagal, J. H.; Cárdenas-Jirón, G. I. J. Electroanal. Chem. 2000,489, 96. doi: 10.1016/S0022-0728(00)00209-6

    30. [30]

      (30) Zagal, J. H.; Gulppi, M.; Issacs, M.; Cardenas-Jiron, G.;Aguirre, M. J. Electrochim. Acta 1998, 44, 1349. doi: 10.1016/S0013-4686(98)00257-6

    31. [31]

      (31) Fendorf, S. E.; Fendorf, M.; Sparks, D. L.; Gronsky, R.J. Colloid Interface Sci. 1992, 153, 37. doi: 10.1016/0021-9797(92)90296-X

    32. [32]

      (32) Eckhardt, H.; Shacklette, L.W.; Jen, K. Y. J. Chem. Phys. 1989,91, 1303. doi: 10.1063/1.457153

    33. [33]

      (33) Jean, Y.; Volatron, F. An Introduction to Molecular Orbitals;Oxford University Press: Oxford, 1993.

    34. [34]

      (34) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel,W.Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    11. [11]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    12. [12]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    15. [15]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(607)
  • Abstract views(1143)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return