Citation: MARÍ B., CEMBRERO-COCA P., SINGH K. C., KAUSHIK R. D., OM Hari. Preparation and Luminescence Properties of MZrO3:Eu3+,A (M=Ca2+, Ba2+; A=Li+, Na+, K+) Phosphors with Perovskite Structure[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1357-1362. doi: 10.3866/PKU.WHXB201304032
-
Calcium and barium zirconate powders based upon CaZrO3:Eu3+,A and BaZrO3:Eu3+,A (A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000℃ to improve crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results showed that CaZrO3:Eu3+,A and BaZrO3:Eu3+,A (A=Li+, Na+, K+) perovskites possessed orthorhombic and cubic structures, respectively. The morphologies of all powders were very similar consisting of small, coagulated, cubical particles with narrow size distributions and smooth and regular surfaces. The characteristic luminescences of Eu3+ ions in CaZrO3:Eu3+,A (A=Li+, Na+, K+) lattices were present with strong emissions at 614 and 625 nm for 5D0→7F2 transitions with other weaker emissions observed at 575, 592, 655, and 701 nm corresponding to 5D0→7Fn transitions (where n=0, 1, 3, 4 respectively). In BaZrO3:Eu3+ both the 5D0→7F1 and 5D0→7F2 transitions at 595 and 613 nm were strong. Photoluminescence intensities of CaZrO3:Eu3+ samples were higher than those of BaZrO3:Eu3+ lattices. This remarkable increase of photoluminescence intensity (corresponding to 5D0→7Fn transitions) was observed in CaZrO3:Eu3+ and BaZrO3:Eu3+ if co-doped with Li+ ions. An additional broad band composed of many peaks between 440 to 575 nm was observed in BaZrO3:Eu3+,,A samples. The intensity of this band was greatest in Li+ co-doped samples and lowest for K+ doped samples.
-
-
[1]
(1) Pan, Y.; Su, Q.; Xu, H.; Chen, T.; Ge,W.; Yang, C.;Wu, M.J. Solid State Chem. 2003, 174, 69. doi: 10.1016/S0022-4596(03)00175-0
-
[2]
(2) Boutinaud, P.; Pinel, E.; Dubois, M.; Vink, A. P.; Mahiou, R.J. Lumin. 2005, 111, 69. doi: 10.1016/j.jlumin.2004.06.006
-
[3]
(3) Okamoto, S.; amamoto, H.. Appl. Phys. Lett. 2001, 78, 655.doi: 10.1063/1.1343491
-
[4]
(4) Zhang, H. X.; Kam, C. H.; Zhou, Y.; Han, X.; Buddhudu, S.;Xiang, Q.; Lam, Y. L.; Chan, Y. C. Appl. Phys. Lett. 2000, 77,609. doi: 10.1063/1.127060
-
[5]
(5) Amami, J.; Hreniak, D.; Guyot, Y.; Zhao,W.; Boulon, G.J. Lumin. 2006, 119-120, 383.
-
[6]
(6) Park, J. K.; Ryu, H.; Park, H. D.; Choi, S. Y. J. Eur. Ceram. Soc.2001, 21, 535. doi: 10.1016/S0955-2219(00)00238-7
-
[7]
(7) Pinel, E.; Boutinaud, P.; Mahiou, R. J. Alloy. Compd. 2004, 380,225. doi: 10.1016/j.jallcom.2004.03.048
-
[8]
(8) Zhang, H.W.; Fu, X. Y.; Niu, S. Y.; Xin, Q. J. Lumin. 2008, 128,1348. doi: 10.1016/j.jlumin.2008.01.007
-
[9]
(9) Zhang, H.W.; Fu, X. Y.; Niu, S. Y.; Xin, Q. J. Alloy. Compd.2008, 459, 103. doi: 10.1016/j.jallcom.2007.04.259
-
[10]
(10) Alarcon, J.; van der Voort, D.; Blasse, G. Mater. Res. Bull. 1992,27, 467. doi: 10.1016/0025-5408(92)90024-T
-
[11]
(11) Liu, X. H.;Wang, X. D. Opt. Mater. 2007, 30, 626. doi: 10.1016/j.optmat.2007.02.032
-
[12]
(12) Koopmans, H. J. A.; van de Velde, G. M. H.; Gellings, P. J. Acta Crystallogr. C 1983, 39, 1323. doi: 10.1107/S0108270183008392
-
[13]
(13) Norton, F. H. Fine Ceramics; McGraw-Hill: New York, 1970.
-
[14]
(14) Joly, A. G.; Chen,W.; Zhang, J.;Wang, S. J. Lumin. 2007, 126,491. doi: 10.1016/j.jlumin.2006.09.004
-
[15]
(15) Cong, Y.; Li, B.; Lei, B.;Wang, X.; Liu, C.; Liu, J.; Li,W.J. Lumin. 2008, 128, 105. doi: 10.1016/j.jlumin.2007.05.016
-
[16]
(16) Xiao, X.; Yan, B. J. Mater. Lett. 2007, 61, 1649. doi: 10.1016/j.matlet.2006.07.092
-
[17]
(17) Fu, J. J. Electrochemical Solid State Lett. 2000, 3, 350.
-
[18]
(18) Marí, B.; Singh, K. C.; Moya, M.; Singh, I.; Om, H.; Chand, S.Optical Materials 2012, 34,1267. doi: 10.1016/j.optmat.2012.01.032
-
[19]
(19) Marí, B.; Singh, K.; Sahal, M.; Khatkar, S.; Taxak, V.; Kumar,M. J. Lumin. 2011, 131, 587. doi: 10.1016/j.jlumin.2010.10.035
-
[20]
(20) Park, I. Y.; Kim, D.; Lee, J.; Lee, S. H.; Kim, K. J. Mater. Chem. Phys. 2007, 106, 149. doi: 10.1016/j.matchemphys.2007.05.050
-
[21]
(21) Di,W.; Zhao, X.; Lu, S. J. Solid State Chem. 2007, 180, 2478.doi: 10.1016/j.jssc.2007.06.025
-
[22]
(22) Uhlich, D.; Huppertz, P.;Wiechert, D. U.; Justel, T. J. Opt. Mater. 2007, 29, 1505. doi: 10.1016/j.optmat.2006.07.013
-
[23]
(23) Kang, M.; Liao, X.; Kang, Y.; Liu, J.; Sun, R.; Yin, G.; Huang,Z.; Yao, I. J. Mater. Sci. 2009, 44, 2388. doi: 10.1007/s10853-009-3298-x
-
[24]
(24) Ekambaram, S.; Patil, K. C. J. Alloy. Compd. 1997, 248, 7.doi: 10.1016/S0925-8388(96)02622-9
-
[25]
(25) Guan, L.; Jin, L. T.; Guo, S. Q.; Liu, Y. F.; Li, X.; Guo, Q. L.;Yang, Z. P.; Fu, G. S. J. Rare Earths 2010, 28, 292.doi: 10.1016/S1002-0721(10)60362-6
-
[26]
(26) Liu, X.;Wang, X. Opt. Mater. 2007, 30, 626. doi: 10.1016/j.optmat.2007.02.032
-
[27]
(27) Zhang, H.; Fu, X.; Niu, S.; Xin, Q. J. Alloy. Compd. 2008, 459,103. doi: 10.1016/j.jallcom.2007.04.259
-
[28]
(28) Li, X.; Guan, L.; An, J. Y.; Jin, L. T.; Yang, Z. P.; Yang, Y. M.;Li, P. L.; Fu, G. S. Chin. Phys. Lett. 2011, 28, 027805-1.doi: 10.1088/0256-307X/28/2/027805
-
[29]
(29) Hannan, A.; Iwasa, K.; Kohgi, M.; Suzuki, T. J. Phys. Soc. Jpn.2000, 69, 2358. doi: 10.1143/JPSJ.69.2358
-
[30]
(30) Ahmed, M. A.; Ateia, E.; El-Dek, S. I. Mater. Lett. 2003, 57,4256. doi: 10.1016/S0167-577X(03)00300-8
-
[31]
(31) Zhang, H.W.; Fu, X. Y.; Niu, S. Y.; Xin, Q. J. Solid State Chem.2004, 177, 2649. doi: 10.1016/j.jssc.2004.04.037
-
[32]
(32) Lu, Z.; Chen, L.; Tang, Y.; Li, Y. J. Alloy. Compd. 2005, 387,L1.
-
[33]
(33) Mao, Z. Y.;Wang, D. J.; Lu, Q. F.; Yu,W. H.; Yuan, Z. H. Chem. Commun. 2009, 346.
-
[34]
(34) Shimizu, Y.; Sakagami, S.; to, K.; Nakachi, Y.; Ueda, K.Materials Science and Engineering: B 2009, 161, 100.doi: 10.1016/j.mseb.2008.11.035
-
[35]
(35) Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer:Berlin, 1994.
-
[36]
(36) Ryu, H.; Singh, B. K.; Bartwal, K. S.; Brik, M. G.; Kityk, I. V.Acta Mater. 2008, 56, 358. doi: 10.1016/j.actamat.2007.09.041
-
[37]
(37) Diallo, P. T.; Jeanlouis, K.; Boutinaud, P. J. Alloy. Compd. 2001,323 - 324, 218.
-
[38]
(38) Tang, J. F.; Yu, X. B.; Yang, L. Z.; Zhou, C. L.; Peng, X. D.Mater. Lett. 2006, 60, 326. doi: 10.1016/j.matlet.2005.08.047
-
[39]
(39) Yang, H. K.; Chung, J.W.; Moon, B. K.; Choi, B. C.; Jeong, J.H.; Kim, K. H. J. Phys. D: Appl. Phys. 2009, 42, 085411.doi: 10.1088/0022-3727/42/8/085411
-
[1]
-
-
[1]
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
-
[2]
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
-
[3]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
-
[4]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[5]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[6]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[7]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[8]
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
-
[9]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[12]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[13]
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
-
[14]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[15]
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
-
[16]
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
-
[17]
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
-
[18]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[19]
Kun Zou , Yihang Xiao , Jinyu Yang , Mingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497
-
[20]
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
-
[1]
Metrics
- PDF Downloads(924)
- Abstract views(1142)
- HTML views(56)