Citation: LIN Yue-Xia, WANG Hong-Yan, GAO Si-Min, WU Ying-Xi, LI Ru-Hu. Double-Proton-Transfer Reaction in Guanine-Cytosine Base Pair Embedded in B-Form DNA[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1233-1239. doi: 10.3866/PKU.WHXB201304022
-
The double-proton-transfer reaction of the isolated guanine-cytosine (GC) base pair and four DNA trimers with different nucleobase sequences (dATGCAT, dGCGCGC, dTAGCTA, and dCGGCCG) are studied by quantum mechanical calculations using ONIOM(M06-2X/6-31G*:PM3). Proton-transfer patterns, energy and structural properties are analyzed to gain insight into the double-proton-transfer mechanism with consideration to environmental factors. In the gas phase, a stepwise mechanism is found for the dCGGCCG trimer, and a concerted mechanism is found in the other four models. The computational results demonstrate that electrostatic interaction of the peripheral and middle base pairs have a pronounced effect on double-proton-transfer pattern of GC base pairs. The structures with dATGCAT and dGCGCGC sequences facilitate H4a proton transfer and those with dTAGCTA and dCGGCCG sequence facilitate H1 proton transfer. The high proton affinity of cytosine at N3 facilitates H1 proton transfer. In aqueous solution, electrostatic interactions are reduced and the products of single-proton-transfer in the stepwise mechanism are stabilized. This results in a stepwise transfer pattern becoming favorable. Solvent effects favor the single-proton-transfer reaction more than gas phase conditions, but increase the reaction energy of double-proton-transfer.
-
-
[1]
(1) Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.doi: 10.1021/ja036211w
-
[2]
(2) Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B2008, 112, 10752. doi: 10.1021/jp804005t
-
[3]
(3) Yamagami, R.; Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc.2008, 130, 14772. doi: 10.1021/ja805127e
-
[4]
(4) Adhikary, A.; Khanduri, D.; Sevilla, M. D. J. Am. Chem. Soc.2009, 131, 8614. doi: 10.1021/ja9014869
-
[5]
(5) rb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski,W. A.;Leszczynski, J. J. Am. Chem. Soc. 2004, 126, 10119. doi: 10.1021/ja049155n
-
[6]
(6) Zoete, V.; Meuwly, M. J. Chem. Phys. 2004, 121, 4377. doi: 10.1063/1.1774152
-
[7]
(7) Sevilla, M. D.; Besler, B.; Colson, A. O. J. Phys. Chem. 1995,99, 1060. doi: 10.1021/j100003a032
-
[8]
(8) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574. doi: 10.1021/ja953370+
-
[9]
(9) Smets, J.; Houben, L.; Schoone, K.; Maes, G.; Adamowicz, L.Chem. Phys. Lett. 1996, 262, 789. doi: 10.1016/S0009-2614(96)01151-7
-
[10]
(10) Podolyan, Y.; rb, L.; Leszczynski, J. J. Phys. Chem. A 2000,104, 7346. doi: 10.1021/jp000740u
-
[11]
(11) Noguera, M.; Rodríguez-Santia , L.; Sodupe, M.; Bertran, J.J. Mol. Struct. 2001, 537, 307.
-
[12]
(12) Florián, J.; Leszczyński, J. J. Am. Chem. Soc. 1996, 118, 3010.doi: 10.1021/ja951983g
-
[13]
(13) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. A 2004,108, 333. doi: 10.1021/jp036573q
-
[14]
(14) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007,118, 113. doi: 10.1007/s00214-007-0248-z
-
[15]
(15) Lin, Y.;Wang, H.; Gao, S.; Schaefer, H. F. J. Phys. Chem. B2011, 115, 11746. doi: 10.1021/jp205403f
-
[16]
(16) Lin, Y.;Wang, H.; Gao, S.; Li, R.; Schaefer, H. F. J. Phys. Chem. B 2012, 116, 8908. doi: 10.1021/jp3048746
-
[17]
(17) Gupta, A.; Jaeger, H. M.; Compaan, K. R.; Schaefer, H. F.J. Phys. Chem. B 2012, 116, 5579. doi: 10.1021/jp211608b
-
[18]
(18) Chen, H. Y.; Kao, C. L.; Hsu, S. C. N. J. Am. Chem. Soc. 2009,131, 15930. doi: 10.1021/ja906899p
-
[19]
(19) Chen, H. Y.; Yeh, S.W.; Hsu, S. C. N.; Kao, C. L.; Dong, T. Y.Phys. Chem. Chem. Phys. 2011, 13, 2674. doi: 10.1039/c0cp01419b
-
[20]
(20) Cerón-Carrasco, J. P.; Zúñiga, J.; Requena, A.; Perpète, E. A.;Michaux, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2011, 13,14584. doi: 10.1039/c1cp20946a
-
[21]
(21) Šponer, J.; Leszczynski, J.; Hobza, P. J. Mol. Struct. -Theochem2001, 573, 43. doi: 10.1016/S0166-1280(01)00537-1
-
[22]
(22) Chen, H. Y.; Chao, I. ChemPhysChem 2004, 5, 1855.
-
[23]
(23) Ray, S. G.; Daube, S. S.; Naaman, R. Proc. Natl. Acad. Sci.2005, 102, 15. doi: 10.1073/pnas.0407020102
-
[24]
(24) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D.Nucl. Acids Res. 2006, 34, 564. doi: 10.1093/nar/gkj454
-
[25]
(25) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2007, 111, 5464.doi: 10.1021/jp070800x
-
[26]
(26) Šponer, J.; Riley, K. E.; Hobza, P. Phys Chem. Chem. Phys.2008, 10, 2595. doi: 10.1039/b719370j
-
[27]
(27) Matsui, T.; Sato, T.; Shigeta, Y. Int. J. Quantum Chem. 2009,109, 2168. doi: 10.1002/qua.v109:10
-
[28]
(28) Chen, H. Y.; Young, P. Y.; Hsu, S. C. N. J. Chem. Phys. 2009,130, 165101. doi: 10.1063/1.3120604
-
[29]
(29) Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys.2010, 12, 1253. doi: 10.1039/b920603e
-
[30]
(30) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2011, 115, 4990.doi: 10.1021/jp200537t
-
[31]
(31) Gu, J.;Wang, J.; Leszczynski, J. Chem. Phys. Lett. 2011, 512,108. doi: 10.1016/j.cplett.2011.06.085
-
[32]
(32) Cerón-Carrasco, J. P.; Requena, A.; Jacquemin, D. Theor. Chem. Acc. 2012, 131, 1188. doi: 10.1007/s00214-012-1188-9
-
[33]
(33) Zhang, F.;Wang, H. Y.; Lin, Y. X. Acta Phys. -Chim. Sin. 2011,27, 2799. [张凤, 王红艳, 林月霞. 物理化学学报, 2011, 27,2799.] doi: 10.3866/PKU.WHXB20112799
-
[34]
(34) HyperChem Professional 8.0.3; Hypercube, Inc., 1115 NW 4thStreet, Gainesville, FL 32601.
-
[35]
(35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
-
[36]
(36) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a
-
[37]
(37) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 119, 525. doi: 10.1007/s00214-007-0401-8
-
[38]
(38) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1. doi: 10.1016/j.cplett.2010.11.060
-
[39]
(39) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.
-
[40]
(40) Matsubara, T.; Sieber, S.; Morokuma, K. Int . J. Quantum Chem.1996, 60, 1101.
-
[41]
(41) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996,105, 1959. doi: 10.1063/1.472065
-
[42]
(42) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357. doi: 10.1021/jp962071j
-
[43]
(43) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys. 1996,105, 3654. doi: 10.1063/1.472235
-
[44]
(44) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.
-
[45]
(45) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.
-
[46]
(46) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.
-
[47]
(47) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.doi: 10.1016/0301-0104(81)85090-2
-
[48]
(48) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239. doi: 10.1016/0301-0104(82)85072-6
-
[49]
(49) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.1996, 255, 327. doi: 10.1016/0009-2614(96)00349-1
-
[50]
(50) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.1; Gaussian Inc.:Wallingford, CT, 2009.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[5]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[6]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[9]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[10]
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
-
[11]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[12]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[13]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[14]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[15]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[16]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[17]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[20]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[1]
Metrics
- PDF Downloads(548)
- Abstract views(879)
- HTML views(27)