Citation: LIN Yue-Xia, WANG Hong-Yan, GAO Si-Min, WU Ying-Xi, LI Ru-Hu. Double-Proton-Transfer Reaction in Guanine-Cytosine Base Pair Embedded in B-Form DNA[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1233-1239. doi: 10.3866/PKU.WHXB201304022 shu

Double-Proton-Transfer Reaction in Guanine-Cytosine Base Pair Embedded in B-Form DNA

  • Received Date: 17 December 2012
    Available Online: 2 April 2013

    Fund Project: 国家自然科学基金(10974161, 11174237) (10974161, 11174237) 国家重点基础研究发展规划项目(973) (2013CB328904) (973) (2013CB328904)中央高校基本科研业务费专项基金(2010ZT06)资助 (2010ZT06)

  • The double-proton-transfer reaction of the isolated guanine-cytosine (GC) base pair and four DNA trimers with different nucleobase sequences (dATGCAT, dGCGCGC, dTAGCTA, and dCGGCCG) are studied by quantum mechanical calculations using ONIOM(M06-2X/6-31G*:PM3). Proton-transfer patterns, energy and structural properties are analyzed to gain insight into the double-proton-transfer mechanism with consideration to environmental factors. In the gas phase, a stepwise mechanism is found for the dCGGCCG trimer, and a concerted mechanism is found in the other four models. The computational results demonstrate that electrostatic interaction of the peripheral and middle base pairs have a pronounced effect on double-proton-transfer pattern of GC base pairs. The structures with dATGCAT and dGCGCGC sequences facilitate H4a proton transfer and those with dTAGCTA and dCGGCCG sequence facilitate H1 proton transfer. The high proton affinity of cytosine at N3 facilitates H1 proton transfer. In aqueous solution, electrostatic interactions are reduced and the products of single-proton-transfer in the stepwise mechanism are stabilized. This results in a stepwise transfer pattern becoming favorable. Solvent effects favor the single-proton-transfer reaction more than gas phase conditions, but increase the reaction energy of double-proton-transfer.

  • 加载中
    1. [1]

      (1) Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.doi: 10.1021/ja036211w

    2. [2]

      (2) Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B2008, 112, 10752. doi: 10.1021/jp804005t

    3. [3]

      (3) Yamagami, R.; Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc.2008, 130, 14772. doi: 10.1021/ja805127e

    4. [4]

      (4) Adhikary, A.; Khanduri, D.; Sevilla, M. D. J. Am. Chem. Soc.2009, 131, 8614. doi: 10.1021/ja9014869

    5. [5]

      (5) rb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski,W. A.;Leszczynski, J. J. Am. Chem. Soc. 2004, 126, 10119. doi: 10.1021/ja049155n

    6. [6]

      (6) Zoete, V.; Meuwly, M. J. Chem. Phys. 2004, 121, 4377. doi: 10.1063/1.1774152

    7. [7]

      (7) Sevilla, M. D.; Besler, B.; Colson, A. O. J. Phys. Chem. 1995,99, 1060. doi: 10.1021/j100003a032

    8. [8]

      (8) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574. doi: 10.1021/ja953370+

    9. [9]

      (9) Smets, J.; Houben, L.; Schoone, K.; Maes, G.; Adamowicz, L.Chem. Phys. Lett. 1996, 262, 789. doi: 10.1016/S0009-2614(96)01151-7

    10. [10]

      (10) Podolyan, Y.; rb, L.; Leszczynski, J. J. Phys. Chem. A 2000,104, 7346. doi: 10.1021/jp000740u

    11. [11]

      (11) Noguera, M.; Rodríguez-Santia , L.; Sodupe, M.; Bertran, J.J. Mol. Struct. 2001, 537, 307.

    12. [12]

      (12) Florián, J.; Leszczyński, J. J. Am. Chem. Soc. 1996, 118, 3010.doi: 10.1021/ja951983g

    13. [13]

      (13) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. A 2004,108, 333. doi: 10.1021/jp036573q

    14. [14]

      (14) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007,118, 113. doi: 10.1007/s00214-007-0248-z

    15. [15]

      (15) Lin, Y.;Wang, H.; Gao, S.; Schaefer, H. F. J. Phys. Chem. B2011, 115, 11746. doi: 10.1021/jp205403f

    16. [16]

      (16) Lin, Y.;Wang, H.; Gao, S.; Li, R.; Schaefer, H. F. J. Phys. Chem. B 2012, 116, 8908. doi: 10.1021/jp3048746

    17. [17]

      (17) Gupta, A.; Jaeger, H. M.; Compaan, K. R.; Schaefer, H. F.J. Phys. Chem. B 2012, 116, 5579. doi: 10.1021/jp211608b

    18. [18]

      (18) Chen, H. Y.; Kao, C. L.; Hsu, S. C. N. J. Am. Chem. Soc. 2009,131, 15930. doi: 10.1021/ja906899p

    19. [19]

      (19) Chen, H. Y.; Yeh, S.W.; Hsu, S. C. N.; Kao, C. L.; Dong, T. Y.Phys. Chem. Chem. Phys. 2011, 13, 2674. doi: 10.1039/c0cp01419b

    20. [20]

      (20) Cerón-Carrasco, J. P.; Zúñiga, J.; Requena, A.; Perpète, E. A.;Michaux, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2011, 13,14584. doi: 10.1039/c1cp20946a

    21. [21]

      (21) Šponer, J.; Leszczynski, J.; Hobza, P. J. Mol. Struct. -Theochem2001, 573, 43. doi: 10.1016/S0166-1280(01)00537-1

    22. [22]

      (22) Chen, H. Y.; Chao, I. ChemPhysChem 2004, 5, 1855.

    23. [23]

      (23) Ray, S. G.; Daube, S. S.; Naaman, R. Proc. Natl. Acad. Sci.2005, 102, 15. doi: 10.1073/pnas.0407020102

    24. [24]

      (24) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D.Nucl. Acids Res. 2006, 34, 564. doi: 10.1093/nar/gkj454

    25. [25]

      (25) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2007, 111, 5464.doi: 10.1021/jp070800x

    26. [26]

      (26) Šponer, J.; Riley, K. E.; Hobza, P. Phys Chem. Chem. Phys.2008, 10, 2595. doi: 10.1039/b719370j

    27. [27]

      (27) Matsui, T.; Sato, T.; Shigeta, Y. Int. J. Quantum Chem. 2009,109, 2168. doi: 10.1002/qua.v109:10

    28. [28]

      (28) Chen, H. Y.; Young, P. Y.; Hsu, S. C. N. J. Chem. Phys. 2009,130, 165101. doi: 10.1063/1.3120604

    29. [29]

      (29) Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys.2010, 12, 1253. doi: 10.1039/b920603e

    30. [30]

      (30) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2011, 115, 4990.doi: 10.1021/jp200537t

    31. [31]

      (31) Gu, J.;Wang, J.; Leszczynski, J. Chem. Phys. Lett. 2011, 512,108. doi: 10.1016/j.cplett.2011.06.085

    32. [32]

      (32) Cerón-Carrasco, J. P.; Requena, A.; Jacquemin, D. Theor. Chem. Acc. 2012, 131, 1188. doi: 10.1007/s00214-012-1188-9

    33. [33]

      (33) Zhang, F.;Wang, H. Y.; Lin, Y. X. Acta Phys. -Chim. Sin. 2011,27, 2799. [张凤, 王红艳, 林月霞. 物理化学学报, 2011, 27,2799.] doi: 10.3866/PKU.WHXB20112799

    34. [34]

      (34) HyperChem Professional 8.0.3; Hypercube, Inc., 1115 NW 4thStreet, Gainesville, FL 32601.

    35. [35]

      (35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.

    36. [36]

      (36) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a

    37. [37]

      (37) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 119, 525. doi: 10.1007/s00214-007-0401-8

    38. [38]

      (38) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1. doi: 10.1016/j.cplett.2010.11.060

    39. [39]

      (39) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.

    40. [40]

      (40) Matsubara, T.; Sieber, S.; Morokuma, K. Int . J. Quantum Chem.1996, 60, 1101.

    41. [41]

      (41) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996,105, 1959. doi: 10.1063/1.472065

    42. [42]

      (42) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357. doi: 10.1021/jp962071j

    43. [43]

      (43) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys. 1996,105, 3654. doi: 10.1063/1.472235

    44. [44]

      (44) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.

    45. [45]

      (45) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.

    46. [46]

      (46) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.

    47. [47]

      (47) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.doi: 10.1016/0301-0104(81)85090-2

    48. [48]

      (48) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239. doi: 10.1016/0301-0104(82)85072-6

    49. [49]

      (49) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.1996, 255, 327. doi: 10.1016/0009-2614(96)00349-1

    50. [50]

      (50) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.1; Gaussian Inc.:Wallingford, CT, 2009.


  • 加载中
    1. [1]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(548)
  • Abstract views(1115)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return