Citation: LIN Yue-Xia, WANG Hong-Yan, GAO Si-Min, WU Ying-Xi, LI Ru-Hu. Double-Proton-Transfer Reaction in Guanine-Cytosine Base Pair Embedded in B-Form DNA[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1233-1239. doi: 10.3866/PKU.WHXB201304022 shu

Double-Proton-Transfer Reaction in Guanine-Cytosine Base Pair Embedded in B-Form DNA

  • Received Date: 17 December 2012
    Available Online: 2 April 2013

    Fund Project: 国家自然科学基金(10974161, 11174237) (10974161, 11174237) 国家重点基础研究发展规划项目(973) (2013CB328904) (973) (2013CB328904)中央高校基本科研业务费专项基金(2010ZT06)资助 (2010ZT06)

  • The double-proton-transfer reaction of the isolated guanine-cytosine (GC) base pair and four DNA trimers with different nucleobase sequences (dATGCAT, dGCGCGC, dTAGCTA, and dCGGCCG) are studied by quantum mechanical calculations using ONIOM(M06-2X/6-31G*:PM3). Proton-transfer patterns, energy and structural properties are analyzed to gain insight into the double-proton-transfer mechanism with consideration to environmental factors. In the gas phase, a stepwise mechanism is found for the dCGGCCG trimer, and a concerted mechanism is found in the other four models. The computational results demonstrate that electrostatic interaction of the peripheral and middle base pairs have a pronounced effect on double-proton-transfer pattern of GC base pairs. The structures with dATGCAT and dGCGCGC sequences facilitate H4a proton transfer and those with dTAGCTA and dCGGCCG sequence facilitate H1 proton transfer. The high proton affinity of cytosine at N3 facilitates H1 proton transfer. In aqueous solution, electrostatic interactions are reduced and the products of single-proton-transfer in the stepwise mechanism are stabilized. This results in a stepwise transfer pattern becoming favorable. Solvent effects favor the single-proton-transfer reaction more than gas phase conditions, but increase the reaction energy of double-proton-transfer.

  • 加载中
    1. [1]

      (1) Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.doi: 10.1021/ja036211w

    2. [2]

      (2) Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B2008, 112, 10752. doi: 10.1021/jp804005t

    3. [3]

      (3) Yamagami, R.; Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc.2008, 130, 14772. doi: 10.1021/ja805127e

    4. [4]

      (4) Adhikary, A.; Khanduri, D.; Sevilla, M. D. J. Am. Chem. Soc.2009, 131, 8614. doi: 10.1021/ja9014869

    5. [5]

      (5) rb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski,W. A.;Leszczynski, J. J. Am. Chem. Soc. 2004, 126, 10119. doi: 10.1021/ja049155n

    6. [6]

      (6) Zoete, V.; Meuwly, M. J. Chem. Phys. 2004, 121, 4377. doi: 10.1063/1.1774152

    7. [7]

      (7) Sevilla, M. D.; Besler, B.; Colson, A. O. J. Phys. Chem. 1995,99, 1060. doi: 10.1021/j100003a032

    8. [8]

      (8) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574. doi: 10.1021/ja953370+

    9. [9]

      (9) Smets, J.; Houben, L.; Schoone, K.; Maes, G.; Adamowicz, L.Chem. Phys. Lett. 1996, 262, 789. doi: 10.1016/S0009-2614(96)01151-7

    10. [10]

      (10) Podolyan, Y.; rb, L.; Leszczynski, J. J. Phys. Chem. A 2000,104, 7346. doi: 10.1021/jp000740u

    11. [11]

      (11) Noguera, M.; Rodríguez-Santia , L.; Sodupe, M.; Bertran, J.J. Mol. Struct. 2001, 537, 307.

    12. [12]

      (12) Florián, J.; Leszczyński, J. J. Am. Chem. Soc. 1996, 118, 3010.doi: 10.1021/ja951983g

    13. [13]

      (13) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. A 2004,108, 333. doi: 10.1021/jp036573q

    14. [14]

      (14) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007,118, 113. doi: 10.1007/s00214-007-0248-z

    15. [15]

      (15) Lin, Y.;Wang, H.; Gao, S.; Schaefer, H. F. J. Phys. Chem. B2011, 115, 11746. doi: 10.1021/jp205403f

    16. [16]

      (16) Lin, Y.;Wang, H.; Gao, S.; Li, R.; Schaefer, H. F. J. Phys. Chem. B 2012, 116, 8908. doi: 10.1021/jp3048746

    17. [17]

      (17) Gupta, A.; Jaeger, H. M.; Compaan, K. R.; Schaefer, H. F.J. Phys. Chem. B 2012, 116, 5579. doi: 10.1021/jp211608b

    18. [18]

      (18) Chen, H. Y.; Kao, C. L.; Hsu, S. C. N. J. Am. Chem. Soc. 2009,131, 15930. doi: 10.1021/ja906899p

    19. [19]

      (19) Chen, H. Y.; Yeh, S.W.; Hsu, S. C. N.; Kao, C. L.; Dong, T. Y.Phys. Chem. Chem. Phys. 2011, 13, 2674. doi: 10.1039/c0cp01419b

    20. [20]

      (20) Cerón-Carrasco, J. P.; Zúñiga, J.; Requena, A.; Perpète, E. A.;Michaux, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2011, 13,14584. doi: 10.1039/c1cp20946a

    21. [21]

      (21) Šponer, J.; Leszczynski, J.; Hobza, P. J. Mol. Struct. -Theochem2001, 573, 43. doi: 10.1016/S0166-1280(01)00537-1

    22. [22]

      (22) Chen, H. Y.; Chao, I. ChemPhysChem 2004, 5, 1855.

    23. [23]

      (23) Ray, S. G.; Daube, S. S.; Naaman, R. Proc. Natl. Acad. Sci.2005, 102, 15. doi: 10.1073/pnas.0407020102

    24. [24]

      (24) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D.Nucl. Acids Res. 2006, 34, 564. doi: 10.1093/nar/gkj454

    25. [25]

      (25) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2007, 111, 5464.doi: 10.1021/jp070800x

    26. [26]

      (26) Šponer, J.; Riley, K. E.; Hobza, P. Phys Chem. Chem. Phys.2008, 10, 2595. doi: 10.1039/b719370j

    27. [27]

      (27) Matsui, T.; Sato, T.; Shigeta, Y. Int. J. Quantum Chem. 2009,109, 2168. doi: 10.1002/qua.v109:10

    28. [28]

      (28) Chen, H. Y.; Young, P. Y.; Hsu, S. C. N. J. Chem. Phys. 2009,130, 165101. doi: 10.1063/1.3120604

    29. [29]

      (29) Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys.2010, 12, 1253. doi: 10.1039/b920603e

    30. [30]

      (30) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2011, 115, 4990.doi: 10.1021/jp200537t

    31. [31]

      (31) Gu, J.;Wang, J.; Leszczynski, J. Chem. Phys. Lett. 2011, 512,108. doi: 10.1016/j.cplett.2011.06.085

    32. [32]

      (32) Cerón-Carrasco, J. P.; Requena, A.; Jacquemin, D. Theor. Chem. Acc. 2012, 131, 1188. doi: 10.1007/s00214-012-1188-9

    33. [33]

      (33) Zhang, F.;Wang, H. Y.; Lin, Y. X. Acta Phys. -Chim. Sin. 2011,27, 2799. [张凤, 王红艳, 林月霞. 物理化学学报, 2011, 27,2799.] doi: 10.3866/PKU.WHXB20112799

    34. [34]

      (34) HyperChem Professional 8.0.3; Hypercube, Inc., 1115 NW 4thStreet, Gainesville, FL 32601.

    35. [35]

      (35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.

    36. [36]

      (36) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a

    37. [37]

      (37) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 119, 525. doi: 10.1007/s00214-007-0401-8

    38. [38]

      (38) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1. doi: 10.1016/j.cplett.2010.11.060

    39. [39]

      (39) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.

    40. [40]

      (40) Matsubara, T.; Sieber, S.; Morokuma, K. Int . J. Quantum Chem.1996, 60, 1101.

    41. [41]

      (41) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996,105, 1959. doi: 10.1063/1.472065

    42. [42]

      (42) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357. doi: 10.1021/jp962071j

    43. [43]

      (43) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys. 1996,105, 3654. doi: 10.1063/1.472235

    44. [44]

      (44) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.

    45. [45]

      (45) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.

    46. [46]

      (46) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.

    47. [47]

      (47) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.doi: 10.1016/0301-0104(81)85090-2

    48. [48]

      (48) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239. doi: 10.1016/0301-0104(82)85072-6

    49. [49]

      (49) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.1996, 255, 327. doi: 10.1016/0009-2614(96)00349-1

    50. [50]

      (50) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.1; Gaussian Inc.:Wallingford, CT, 2009.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    10. [10]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(548)
  • Abstract views(878)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return