Citation: CAO Jia, WANG Wen-Liang, GAO Lou-Jun, FU Feng. Mechanism and Thermodynamic Properties of CH3SO3 Decomposition[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1161-1167. doi: 10.3866/PKU.WHXB201304021 shu

Mechanism and Thermodynamic Properties of CH3SO3 Decomposition

  • Received Date: 17 December 2012
    Available Online: 2 April 2013

    Fund Project: 国家自然科学基金(21173139) (21173139)陕西省教育厅科学研究计划(2013JK0667)资助项目 (2013JK0667)

  • The mechanism and kinetics of unimolecular decomposition of CH3SO3 are studied at the G3XMP2//B3LYP/6-311+G(3df,2p) level of theory. Six possible dissociation channels and potential energy surface for the CH3SO3 decomposition are investigated. Rate constants over the temperature range of 200-3000 K are calculated using Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The results indicate that the product P1(CH3+SO3) is dominant between 200-3000 K. Products P2(CH3O+SO2) and P3(HCHO+HOSO) increase significantly at higher temperatures (>3000 K). Products P4(CHSO2+H2O), P5(CH2SO3+H) and P6(CHSO3+H2) show little formation in the temperature range (200-3000 K). The total rate constant can be expressed as ktotal=1.40×1012T0.15exp(7831.58/T). Thermodynamic properties including enthalpies of formation (DfHΘ298 K, DfH0 K), entropies (SΘ298 K), and heat capacities (Cp, 298-2000 K) of all the minima and transition states are predicted from statistical mechanics, and found to be in od agreement with the available experimental values.

  • 加载中
    1. [1]

      (1) Zhang, Q. Z.; Sun, T. L.; Zhou, X. H.;Wang,W. X. Chem. Phys.Lett. 2005, 414, 316. doi: 10.1016/j.cplett.2005.08.084

    2. [2]

      (2) Tsai, I. C.; Chen, J. P.; Lin, P. Y.;Wang,W. C.; Isaksen, S. A.Chem. Phys. 2010, 10, 3693.

    3. [3]

      (3) Cerru, F. G.; Kronenburg, A.; Lindstedt, R. P. Proc. Combust.Inst. 2005, 30, 1227. doi: 10.1016/j.proci.2004.08.083

    4. [4]

      (4) Librando, V.; Tringali, G.; Hjorth, J.; Coluccia, S. Environ.Pollut. 2004, 127, 403. doi: 10.1016/j.envpol.2003.08.003

    5. [5]

      (5) Barnes, I.; Hjorth, J.; Mihalopoulos, N. Chem. Rev. 2006, 106,940. doi: 10.1021/cr020529+

    6. [6]

      (6) Ray, A.; Vassalli, I.; Laverdet, G.; Le Bras, G. J. Phys. Chem.1996, 100, 8895. doi: 10.1021/jp9600120

    7. [7]

      (7) Arsene, C.; Barnes, I.; Becker, K. H.; Mocanu, R. Atmos.Environ. 2001, 35, 3769. doi: 10.1016/S1352-2310(01)00168-6

    8. [8]

      (8) Patroescu, I. V.; Barnes, I.; Becker, K. H.; Mihalopoulos, N.Atmos. Environ. 1998, 33, 25. doi: 10.1016/S1352-2310(98)00120-4

    9. [9]

      (9) Salta, Z.; Kosmas, A. M.; Lesar, A. Comput. Theor. Chem. 2012,1001, 67.

    10. [10]

      (10) Wang, X. J.; Long, M. Acta Phys. -Chim. Sin. 2012, 28, 2581.[王秀军, 龙汨. 物理化学学报, 2012, 28, 2581.] doi: 10.3866/PKU.WHXB201207172

    11. [11]

      (11) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    12. [12]

      (12) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.doi: 10.1103/PhysRevB.37.785

    13. [13]

      (13) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989, 157, 200. doi: 10.1016/0009-2614(89)87234-3

    14. [14]

      (14) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.;Pople, J. A. J. Chem. Phys. 1999, 110, 4703. doi: 10.1063/1.478385

    15. [15]

      (15) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A.J. Chem. Phys. 2001, 114, 108.

    16. [16]

      (16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    17. [17]

      (17) Barker, J. R.; lden, D. M. Chem. Rev. 2003, 103, 4577.doi: 10.1021/cr020655d

    18. [18]

      (18) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2006, 110,10528. doi: 10.1021/jp062693x

    19. [19]

      (19) Zhang, S.W.; Truong. T. N. VKLab, Version 1.0; University ofUtah: Utah, 2001.

    20. [20]

      (20) Duncan,W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem.1998, 19, 1039.

    21. [21]

      (21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182

    22. [22]

      (22) Ga Silva, G.; Bozzelli, J.W. J. Phys. Chem. A 2009, 113, 6979.doi: 10.1021/jp902458d

    23. [23]

      (23) Barker, J. R.; Ortiz, F.; Lawrence, J. M. P.; et al. Multiwell,Revision 2010; University of Michigan: Ann Arbor, MI, 2010.

    24. [24]

      (24) Barker, J. R. Int. J. Chem. Kinet. 2001, 33, 232.

    25. [25]

      (25) Barker, J. R. Int. J. Chem. Kinet. 2009, 41, 748. doi: 10.1002/kin.v41:12

    26. [26]

      (26) Russell, D.; Johnson, III. NIST Computational ChemistryComparison and Benchmark Database Number 101 Release15b, August 2011. http://cccbdb.nist. v/(accessed Oct 27,2012).

    27. [27]

      (27) Hoy, A. R.; Bunker, P. R. J. Mol. Spectrosc. 1979, 74, 1.doi: 10.1016/0022-2852(79)90019-5

    28. [28]

      (28) Jackels, C. F. J. Chem. Phys. 1982, 76, 505. doi: 10.1063/1.442752

    29. [29]

      (29) Ruscic, B.; Boggs, J. E.; Burcat, A.; Csaszar, A. G.; Demaison,J.; Janoschek, R.; Martin, J. M. L.; Morton, M. L.; Rossi, M. J.J.; Stanton, F.; Szalay, P. G.;Westmoreland, P. R.; Zabel, F.;Berces, T. J. Phys. Chem. Ref. Data 2005, 34, 573.doi: 10.1063/1.1724828

    30. [30]

      (30) Ruscic, B.; Pinzon, R. E.; Morton, M. L.; Srinivasan, N. K.; Su,M. C.; Sutherland, J.W.; Michael, J. V. J. Phys. Chem. A 2006,110, 6592. doi: 10.1021/jp056311j

    31. [31]

      (31) Wheeler, S. E.; Schaefer, H. F., III. J. Phys. Chem. A 2009, 113,6779. doi: 10.1021/jp9029387


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      . . University Chemistry, 2024, 39(3): 0-0.

Metrics
  • PDF Downloads(664)
  • Abstract views(788)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return