Citation: LI Jian-Chang, WU Jun-Zhi, ZHOU Cheng, NG Xing. Latest Studies on Metal-Molecule-Metal Junctions[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1123-1144. doi: 10.3866/PKU.WHXB201304014 shu

Latest Studies on Metal-Molecule-Metal Junctions

  • Received Date: 29 January 2013
    Available Online: 1 April 2013

    Fund Project: 中央高校基本科研业务费专项资金(N110403001)资助项目 (N110403001)

  • As promising building blocks for molecular electronics, organic molecules have attracted intense research interest. Metal-molecule-metal junctions are often used as testbeds for studying organic molecules’ charge transport properties. In this article, fabrication methods, nanoscalability and addressability of these junctions are reviewed. Fabrication approaches are classified into soft contact, scanning probe microscopy, against-nanowire, crossed-wire, shadow angle evaporation and nanopore junctions. The effects of preparation method on the junction charge transport properties are systematically discussed. In general, the scanning tunneling microscopy technique is suitable for fast screening of molecular conductance, but cannot address junction that limits their in-situ temperature-dependent characterizations. The nanopore junction guarantees od control over the device size and the intrinsic contact stability, however, the nature of the electrode-molecule interface is not well understood. Shadow angle evaporation and soft contact techniques can effectively reduce the possibility of device short circuiting; however, the electrode dimensions limit potential applications. The against-nanowire method provides an easy way to fabricate addressable junctions, and if combined with the crossed-wire procedure may have potential for fabrication and three-dimensional integration of molecular junctions.

  • 加载中
    1. [1]

      (1) Thompson, S. E.; Parthasarathy, S. Mater. Today 2006, 9, 20.

    2. [2]

      (2) Boussaad, S.; Tao, N. J. Appl. Phys. Lett. 2002, 80, 2398. doi: 10.1063/1.1465128

    3. [3]

      (3) Slowinski, K.; Majda, M. J. Electroanal. Chem. 2000, 491,139. doi: 10.1016/S0022-0728(00)00305-3

    4. [4]

      (4) Li, J. C.; Blackstock, S. C.; Szulczewski, G. J. J. Phys. Chem. B 2006, 10, 17493.

    5. [5]

      (5) Vilan, A.; Cahen, D. Adv. Funct. Mater. 2002, 11-12, 795.

    6. [6]

      (6) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Chem. Phys. Lett. 2003, 380, 767. doi: 10.1016/j.cplett.2003.09.080

    7. [7]

      (7) Ruppel, L.; Birkner, A.;Witte, G.; Busse, C.; Lindner, T.;Paasch, G.;Wöll, C. J. Appl. Phys. 2007, 102, 033708. doi: 10.1063/1.2764027

    8. [8]

      (8) Jung, T. A.; Gimzewski, S. J. K.; Tang, H.; Joachim, C.Science 1996, 271, 181. doi: 10.1126/science.271.5246.181

    9. [9]

      (9) Choi, S. H.; Kim, B. S.; Frisbie, C. D. Science 2008, 320,1482. doi: 10.1126/science.1156538

    10. [10]

      (10) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.;Moore, A. L.; Moore, T. A.; Gust, D.; Nagahara, L. A.;Lindsay, S. M. J. Phys. Chem. B 2002, 106, 8609.

    11. [11]

      (11) Zhou, J. F.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131,10439. doi: 10.1021/ja900989a

    12. [12]

      (12) Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P.L. Appl. Phys. Lett. 1999, 75, 301. doi: 10.1063/1.124354

    13. [13]

      (13) Lortscher, E.;Weber, H. B.; Riel, H. Phys. Rev. Lett. 2007, 98,176807. doi: 10.1103/PhysRevLett.98.176807

    14. [14]

      (14) Li, C. Z.; He, H. X.; Tao, N. J. Appl. Phys. Lett. 2000, 77,3995. doi: 10.1063/1.1332406

    15. [15]

      (15) Mbindyo, J. K. N.; Mallouk, T. E.; Mattzela, J. B.;Kratochvilova, I.; Razavi, B.; Jackson, T. N.; Mayer, T. S.J. Am. Chem. Soc. 2002, 124, 4020. doi: 10.1021/ja016696t

    16. [16]

      (16) Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309,113. doi: 10.1126/science.1112666

    17. [17]

      (17) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. J. Vac. Sci. Technol. B 2002, 20, 2802. doi: 10.1116/1.1523025

    18. [18]

      (18) Blum, A. S.; Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.;Moore, M.; Naciri, J.; Shashidhar, R.; Ratna, B. R. J. Phys. Chem. B 2004, 108, 18124. doi: 10.1021/jp0480854

    19. [19]

      (19) Katsia, E.; Tallarida, G.; Kutrzeba-Kotowska, B.; Ferrari, S.;Bundgaard, E.; Søndergaard, R.; Krebs, F. C. Org. Electron.2008, 9, 1044. doi: 10.1016/j.orgel.2008.08.010

    20. [20]

      (20) Li, J. C. Chem. Phys. Lett. 2009, 473, 189. doi: 10.1016/j.cplett.2009.03.044

    21. [21]

      (21) Austin, M. D.; Chou, S. Y. Nano Lett. 2003, 3, 1687. doi: 10.1021/nl034831p

    22. [22]

      (22) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Dickey, M. D.;Whitesides, G. M. Nano Lett. 2010, 10, 3611. doi: 10.1021/nl101918m

    23. [23]

      (23) Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 115,612.

    24. [24]

      (24) Shamai, T.; Ophir, A.; Selzer, Y. Appl. Phys. Lett. 2007, 91,102108. doi: 10.1063/1.2780057

    25. [25]

      (25) Zhitenev, N. B.; Meng, H.; Bao, Z. Phys. Rev. Lett. 2002, 88,226801. doi: 10.1103/PhysRevLett.88.226801

    26. [26]

      (26) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L.; Tour, J.M. Appl. Phys. Lett. 1997, 71, 611. doi: 10.1063/1.120195

    27. [27]

      (27) Martin, Z. L.; Majumdar, N.; Cabral, M. J.; Gergel-Hackettn,N.; Camacho-Alanis, F.; Swami, N.; Bean, J. C.; Lloyd, R. H.;Yao, Y.; Tour, J. M.; Long, D.; Shashidhar, R. IEEE Trans. Nanotechnol. 2009, 8, 574. doi: 10.1109/TNANO.2009.2021161

    28. [28]

      (28) Kim, T.W.;Wang, G.; Lee, H.; Lee, T. Nanotechnology 2007,18, 315204. doi: 10.1088/0957-4484/18/31/315204

    29. [29]

      (29) He, J. L.; Chen, B.; Flatt, A. K.; Stephenson, J. J.; Doyle, C.D.; Tour, J. S. Nat. Mater. 2006, 5, 61.

    30. [30]

      (30) Martin, C. A.; Ding, D. P.; van der Zant, H. S. J.; vanRuitenbeek, J. M. New J. Phys. 2008, 10, 065008. doi: 10.1088/1367-2630/10/6/065008

    31. [31]

      (31) Kervennic, Y. V.; Vanmaekelbergh, D.; Kouwenhoven, L. P.;van der Zant, H. S. J. Appl. Phys. Lett. 2003, 83, 3782. doi: 10.1063/1.1623317

    32. [32]

      (32) Yoon, H. P.; Maitani, M. M.; Cabarcos, O. M.; Cai, L.; Mayer,T. S.; Allara, D. L. Nano Lett. 2010, 10, 2897. doi: 10.1021/nl100982q

    33. [33]

      (33) Majumdar, N.; Gergel, N.; Routenberg, D.; Bean, J. C.;Harriott, L. R.; Li, B.; Pu, L.; Yao, Y.; Tour, J. M. J. Vac. Sci. Technol. B 2005, 23, 1417. doi: 10.1116/1.1935528

    34. [34]

      (34) Slowinki, K.; Fong, H. K. Y.; Majda, M. J. Am. Chem. Soc.1999, 121, 7257. doi: 10.1021/ja991613i

    35. [35]

      (35) Selzer, Y.; Salomon, A.; Cahen, D. J. Am. Chem. Soc. 2002,124, 2886. doi: 10.1021/ja0177511

    36. [36]

      (36) Selzer, Y.; Cahen, D. Adv. Mater. 2001, 13, 508.

    37. [37]

      (37) Itoh, E.; Iwamoto, M. J. Appl. Phys. 1999, 85, 7239. doi: 10.1063/1.370538

    38. [38]

      (38) Selzer, Y.; Salomon, A.; Cahen, D. J. Phys. Chem. B 2002,106, 10432. doi: 10.1021/jp026324m

    39. [39]

      (39) Galperin, M.; Nitzan, A.; Sek, S.; Majda, M. J. Electroanal. Chem. 2003, 550-551, 337.

    40. [40]

      (40) Race, H. H.; Reynolds, S. I. J. Am. Chem. Soc. 1939, 61, 1425.doi: 10.1021/ja01875a030

    41. [41]

      (41) vonWrochem, F.; Gao, D. Q.; Scholz, F.; Nothofer, H. G.;Nelles, G.;Wessels, J. M. Nat. Nanotechnol. 2010, 119, 618.

    42. [42]

      (42) Tran, E.; Duati, M.; Ferri, V.; Müllen, K.; Zharnikov, M.;Whitesides, G. M.; Rampi, M. A. Adv. Mater. 2006, 18, 1323.

    43. [43]

      (43) Tran, E.; Cohen, A. E.; Murray, R.W.; Rampi, M. A.;Whitesides, G. M. J. Am. Chem. Soc. 2009, 131, 2141. doi: 10.1021/ja804075y

    44. [44]

      (44) Haag, R.; Rampi, M. A.; Holmlin, R. E.; George, M.W. J. Am. Chem. Soc. 1999, 121, 7895. doi: 10.1021/ja990230h

    45. [45]

      (45) Vilan, A.; Ghabboun, J.; Cahen, D. J. Phys. Chem. B 2003,107, 6360.

    46. [46]

      (46) Moons, E.; Bruening, M.; Shanzer, A.; Beier, J.; Cahen, D.Synth. Met. 1996, 76, 245. doi: 10.1016/0379-6779(95)03463-T

    47. [47]

      (47) Wu, D. G.; Ghabboun, J.; Martin, J. M. L.; Cahen, D. J. Phys. Chem. B 2001, 105, 12011. doi: 10.1021/jp012708l

    48. [48]

      (48) Shimizu, K. T.; Fabbri, J. D.; Jelincic, J. J.; Melosh, N. A. Adv. Mater. 2006, 18, 1499.

    49. [49]

      (49) Mohamed Ikram, I.; Rabinal, M. K.; Kalasad, M. N.;Mulimani, B. G. Langmuir 2009, 25, 3305. doi: 10.1021/la8035488

    50. [50]

      (50) Fan, X. L.;Wang, C.; Yang, D. L .;Wan, L. J.; Bai, C. L.Chem. Phys. Lett. 2002, 361, 465. doi: 10.1016/S0009-2614(02)00983-1

    51. [51]

      (51) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Langmuir 2004, 20, 855. doi: 10.1021/la0353529

    52. [52]

      (52) Dhirani, A.; Lin, P. H.; Guyot-Sionnest, P.; Zehner, R.W.; Sita,L. R. J. Chem. Phys. 1997, 106, 5249. doi: 10.1063/1.473523

    53. [53]

      (53) Kelley, T.W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater.1999, 11, 261.

    54. [54]

      (54) Jackel, F.;Watson, M. D.; Mullen, K.; Rabe, J. P. Phys. Rev. Lett. 2002, 92, 188303.

    55. [55]

      (55) Wold, D. J.; Frisbie, D. F. J. Am. Chem. Soc. 2001, 123, 5549.doi: 10.1021/ja0101532

    56. [56]

      (56) Reuter, M. G.; Sukharev, M.; Seideman, T. Phys. Rev. Lett.2008, 101, 208303. doi: 10.1103/PhysRevLett.101.208303

    57. [57]

      (57) He, H. X.; Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 2001, 78, 811.doi: 10.1063/1.1335551

    58. [58]

      (58) Mativetsky, J. M.; Pace, G.; Elbing, M., Rampi, M. A.; Mayor,M.; Samor, P. J. Am. Chem. Soc. 2008, 130, 9192. doi: 10.1021/ja8018093

    59. [59]

      (59) Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.;Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.;Venkataraman, L. Phys. Rev. Lett. 2009, 102, 126803. doi: 10.1103/PhysRevLett.102.126803

    60. [60]

      (60) Xia, J. L.; Diez-Perez, I.; Tao, N. J. Nano Lett. 2008, 8, 1960.doi: 10.1021/nl080857a

    61. [61]

      (61) Weibel, N.; B?aszczyk, A.; von Hänisch, C.; Mayor, M.;Pobelov, I.;Wandlowski, T.; Chen, F.; Tao, N. J. Eur. J. Org. Chem. 2008, 136.

    62. [62]

      (62) Hihath, J.; Chen, F.; Zhang, P.; Tao, N. J. J. Phys. Condes. Matter. 2007, 202, 215202.

    63. [63]

      (63) Li, X. L.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J.J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v

    64. [64]

      (64) Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L.Nano Lett. 2011, 11, 1988. doi: 10.1021/nl200324e

    65. [65]

      (65) Zhou, J. F.; Chen, G. J.; Xu, B. Q. J. Phys. Chem. C 2010, 114,8587. doi: 10.1021/jp101257y

    66. [66]

      (66) Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.;de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.;vanWees, B. J. Phys. Rev. Lett. 2003, 91, 207402. doi: 10.1103/PhysRevLett.91.207402

    67. [67]

      (67) Marquardt, C.W.; Grunder, S.; B?aszczyk, A.; Dehm, S.;Hennrich, F.; Lohneysen, H. v.; Mayor, M.; Krupke, R. Nat. Nanotechnol. 2010, 230, 1.

    68. [68]

      (68) Hu,W. P.; Jiang, J.; Nakashima, H.; Luo, Y.; Kashimura, Y.;Chen, K. Q.; Shuai, Z.; Furukawa, K.; Lu,W.; Liu, Y. Q.; Zhu,D. B.; Torimitsu, T. Phys. Rev. Lett. 2006, 96, 027801. doi: 10.1103/PhysRevLett.96.027801

    69. [69]

      (69) Moreland, J.; Ekin, J.W. J. Appl. Phys. 1998, 58, 3888.

    70. [70]

      (70) Muller, C. J.; Vleeming, B.; Reed, M. A.; Lambaz, J. J. S.;Haraz, R.; Jones, L.; Tour, J. M. Nanotechnology 1996, 7, 409.doi: 10.1088/0957-4484/7/4/019

    71. [71]

      (71) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.Science 1997, 278, 252. doi: 10.1126/science.278.5336.252

    72. [72]

      (72) Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; vanHemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906.doi: 10.1038/nature01103

    73. [73]

      (73) van Ruitenbeek, J. M.; Alvarez, A.; Pineyro, I.; Grahmann, C.;Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1995, 67, 108.

    74. [74]

      (74) Wu, S. M.; nzalez, M. T.; Huber, R.; Grunder, S.; Mayor,M.; Shonenberger, C.; Calame, M. Nat. Nanotechnol. 2008,237, 569.

    75. [75]

      (75) Kiguchi, M.; Murakoshi, K. Thin Solid Films 2009, 518, 466.doi: 10.1016/j.tsf.2009.07.024

    76. [76]

      (76) Kiguchi, M.; Tal, O.;Wohlthat, S.; Pauly, F.; Krieger, M.;Djukic, D.; Cuevas, J. C.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2008, 101, 046801. doi: 10.1103/PhysRevLett.101.046801

    77. [77]

      (77) Dolan, G. J. Appl. Phys. Lett. 1977, 31, 337. doi: 10.1063/1.89690

    78. [78]

      (78) Durkan, C.;Welland, M. E. Ultramicroscopy 2008, 82, 125.

    79. [79]

      (79) Hadeed, F. O.; Durkan, C. Appl. Phys. Lett. 2007, 91, 123120.doi: 10.1063/1.2785982

    80. [80]

      (80) Demarchi, D.; Civera, P.; Piccinini, G.; Cocuzza, M.; Perrone,D. Electrochim. Acta 2009, 54, 6003. doi: 10.1016/j.electacta.2009.02.070

    81. [81]

      (81) Asghar,W.; Ramachandran, P. P.; Adewumi, A.; Noor, M. R.;Iqba, S. M. J. Manuf. Sci. Eng.-Trans. ASME 2010, 132,030911. doi: 10.1115/1.4001664

    82. [82]

      (82) Khondaker, S. I.; Yao, Z.; Cheng, L.; Henderson, J. C.; Yao, Y.X.; Tour, J. M. Appl. Phys. Lett. 2004, 85, 645. doi: 10.1063/1.1773915

    83. [83]

      (83) Trouwborst, M. L.; van Der Molen, S. J.; vanWees, B. J. J. Appl. Phys. 2006, 99, 114316. doi: 10.1063/1.2203410

    84. [84]

      (84) Heersche, H. B.; de Groot, Z.; Folk, J. A.; Kouwenhoven, L.P.; van Der Zant, H. S. J.; Houck, A. A.; Labaziewicz, J.;Chuang, I. L. Phys. Rev. Lett. 2006, 96, 017205. doi: 10.1103/PhysRevLett.96.017205

    85. [85]

      (85) Taychatanapat, T.; Bolotin, T. K. I.; Kuemmeth, F.; Ralph, D.C. Nano Lett. 2007, 7, 652. doi: 10.1021/nl062631i

    86. [86]

      (86) Sutanto, J.; Smith, R. L.; Collins, S. D. J. Micromech. Microeng. 2010, 20, 045016. doi: 10.1088/0960-1317/20/4/045016

    87. [87]

      (87) Cai, L. T.; Skulason, H.; Kushmerick, J. G.; Pollack, S. K.;Naciri, J.; Shashidhar, R.; Allara, D. L.; Mallouk, T. E.; Mayer,T. S. J. Phys. Chem. B 2004, 108, 2827. doi: 10.1021/jp0361273

    88. [88]

      (88) Li, C. Z.; Bo zi, A.; Huang,W.; Tao, N. J. Nanotechnology1999, 10, 221. doi: 10.1088/0957-4484/10/2/320

    89. [89]

      (89) Zhou,W. J.;Wei, Z. X.; Yao, J. L.; Gu, R. A. Chem. J. Chin. Univ. 2009, 30, 178. [邹文君, 魏志祥, 姚建林, 顾仁敖. 高等学校化学学报, 2009, 30, 178.]

    90. [90]

      (90) Morpur , A. F.; Marcus, C. M.; Robinson, D. B. Appl. Phys. Lett. 1999, 74, 2084. doi: 10.1063/1.123765

    91. [91]

      (91) Kashimura, Y.; Nakashima, H.; Furukawa, K.; Torimitsu, K.Thin Solid Films 2003, 438-439, 317.

    92. [92]

      (92) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W.;Campbell, E. E. B. Thin Solid Films 2006, 499, 196. doi: 10.1016/j.tsf.2005.06.072

    93. [93]

      (93) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W. Appl. Phys. Lett. 2004, 85, 4756. doi: 10.1063/1.1821657

    94. [94]

      (94) He, H. X.; Zhu, J. S.; Tao, N. J.; Nagahara, L. A.; Amlani, I.;Tsui, R. J. Am. Chem. Soc. 2001, 123, 7730. doi: 10.1021/ja016264i

    95. [95]

      (95) Qu, D. Y.; Uosaki, K. J. Phys. Chem. B 2006, 110, 17570. doi: 10.1021/jp0632135

    96. [96]

      (96) Garno, J. C.; Zangmeister, C. D.; Batteas, J. D. Langmuir2007, 23, 7874. doi: 10.1021/la070015b

    97. [97]

      (97) Bechelany, M.; Brodard, P.; Elias, J.; Brioude, A.; Michler, J.;Philippe, L. Langmuir 2010, 26, 14364. doi: 10.1021/la1016356

    98. [98]

      (98) Zangmeister, C. D.; van Zee, R. D. Langmuir 2003, 19, 8065.doi: 10.1021/la026801s

    99. [99]

      (99) Zhu, P. X.; Masuda, Y.; Koumoto, K. J. Mater. Chem. 2004,14, 976. doi: 10.1039/b311061c

    100. [100]

      (100) Garno, J. C.; Yang, Y. Y.; Amro, N. A.; Cruchon-Dupeyrat, S.;Chen, S.W.; Liu, G. Y. Nano Lett. 2003, 3, 389. doi: 10.1021/nl025934v

    101. [101]

      (101) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.;Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 1999, 11,1021.

    102. [102]

      (102) Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.;Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Appl. Phys. Lett.2000, 77, 1399. doi: 10.1063/1.1290272

    103. [103]

      (103) Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920. doi: 10.1021/ac00109a003

    104. [104]

      (104) Cai, L. T.; Cabassi, M. A.; Yoon, H.; Cabarcos, O. M.;McGuiness, C. L.; Flatt, A. K.; Allara, D. L.; Tour, J. M.;Mayer, T. S. Nano Lett. 2005, 5, 2365. doi: 10.1021/nl051219k

    105. [105]

      (105) Salem, A. K.; Chen, M.; Hayden, J.; Leong, K.W.; Searson, P.C. Nano Lett. 2004, 4, 1163. doi: 10.1021/nl049462r

    106. [106]

      (106) Chen, X. D.; Yeganeh, S.; Qin, L. D.; Li, S. Z.; Xue, C.;Braunschweig, A. B.; Schatz, G. C.; Ratner, M. A.; Mirkin, C.A. Nano Lett. 2009, 9, 3974. doi: 10.1021/nl9018726

    107. [107]

      (107) Osberg, K. D.; Schmucker, A. L.; Senesi, A. J.; Mirkin, C. A.Nano Lett. 2011, 11, 820. doi: 10.1021/nl1041534

    108. [108]

      (108) Lee, B. Y.; Heo, K.; Schmucker, A. L.; Jin, H. J.; Lim, J. K.;Kim, T.; Lee, H.; Jeon, K. S.; Suh, Y. D.; Mirkin, C. A.; Hong,S. Nano Lett. 2012, 12, 1879. doi: 10.1021/nl204259t

    109. [109]

      (109) Chen, X. D.; Jeon, Y. M.; Jang, J.W.; Qin, L. D.; Huo, F.W.;Wei,W.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 8166.doi: 10.1021/ja800338w

    110. [110]

      (110) Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.;Alivisatos, A. P. Appl. Phys. Lett. 1996, 68 , 2574.

    111. [111]

      (111) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett. 2002, 80, 2761. doi: 10.1063/1.1469655

    112. [112]

      (112) Choi, J.; Zhao, Y. H.; Zhang, D. Y.; Chien, S.; Lo, Y. H. Nano Lett. 2003, 3, 995. doi: 10.1021/nl034106e

    113. [113]

      (113) Long, D. P.; Patterson, C. H.; Moore, M. H.; Seferos, D. S.;Bazan, G. C.; Kushmerick, J. G. Appl. Phys. Lett. 2005, 86,153105. doi: 10.1063/1.1899772

    114. [114]

      (114) Dadosh, T.; rdin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.;Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Nature2005, 436, 677. doi: 10.1038/nature03898

    115. [115]

      (115) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.;Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar,R. J. Am. Chem. Soc. 2002, 124, 10654. doi: 10.1021/ja027090n

    116. [116]

      (116) Kushmerick, J. G.; Naciri, J.; Yang, J. C.; Shashidhar, R. Nano Lett. 2003, 3, 897. doi: 10.1021/nl034201n

    117. [117]

      (117) Francis, T. L.; Mermer, O.; Veeraraghavan, G.;Wohlgenannt,M. New J. Phys. 2004, 6, 185. doi: 10.1088/1367-2630/6/1/185

    118. [118]

      (118) De Valladares, L. L. S.; Felix, L. L.; Dominguez, A. B.;Mitrelias, T.; Sfigakis, F.; Khondaker, S. I.; Wbarnes, C. H.;Majima, Y. Nanotechnology 2010, 21, 445304. doi: 10.1088/0957-4484/21/44/445304

    119. [119]

      (119) Li, C.; Zhang, D. H.; Liu, X. L.; Han, S.; Tang, T.; Zhou, C.W.; Fan,W.; Koehne, J.; Han, J.; Meyyappan, M.; Rawlett, A.M.; Price, D.W.; Tour, J. M. Appl. Phys. Lett. 2003, 82, 645.doi: 10.1063/1.1541943

    120. [120]

      (120) Chen, Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D. R.;Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Deirdre, L. O.; Anderson, E. Appl. Phys. Lett. 2003, 82, 1610.doi: 10.1063/1.1559439

    121. [121]

      (121) Chen, Y.; Jung, G. Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D.R.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Williams, R.S. Nanotechnology 2003, 14, 462. doi: 10.1088/0957-4484/14/4/311

    122. [122]

      (122) Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick,D. L.; Chen, Y.; Tong,W. M.;Williams, R. S. Nano Lett. 2004,4, 1225. doi: 10.1021/nl049487q

    123. [123]

      (123) Xia, Q. F.; Yang, J. J.;Wu,W.; Li, X. M.;Williams, R. S. Nano Lett. 2010, 10, 2909. doi: 10.1021/nl1017157

    124. [124]

      (124) Li, J. C.;Wang, D.; Ba, D. C. J. Phys. Chem. C 2012, 116,10986. doi: 10.1021/jp300467c

    125. [125]

      (125) Shen, Q.; Cao, Y.; Liu, S.; Steigerwald, M. L.; Guo, X. F. J. Phys. Chem. C 2009, 113, 10807.

    126. [126]

      (126) Ioffe, Z.; Shama, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.;Cheshnovsky, O.; Selzer, Y. Nat. Nanotechnol. 2008, 304, 727.

    127. [127]

      (127) Zhitenev, N. B.; Erbe, A.; Bao, Z. Phys. Rev. Lett. 2004, 92,186805. doi: 10.1103/PhysRevLett.92.186805

    128. [128]

      (128) Wang,W. Y.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68,035416. doi: 10.1103/PhysRevB.68.035416

    129. [129]

      (129) Reed, M. A.; Chen, J.; Rawlett, A. M.; Price, D.W.; Tour, J. M.Appl. Phys. Lett. 2001, 78, 3735. doi: 10.1063/1.1377042

    130. [130]

      (130) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science1999, 286, 1550. doi: 10.1126/science.286.5444.1550

    131. [131]

      (131) Majumdar, N.; Gergel-Hackettn, N.; Bean, J. C.; Harriott, L.R.; Pattanaik, G.; Zangrai, G.; Yao, Y.; Tour, J. M. Journal of Electronic Materials 2006, 35, 140. doi: 10.1007/s11664-006-0196-8

    132. [132]

      (132) Gergel, N.; Majumdar, N.; Keyvanfar, K.; Swami, N.; Harriott,L. R.; Bean, J. C.; Gyana, P.; Giovanni, Z.; Yao, Y.; Tour, J. M.J. Vac. Sci. Technol. A 2005, 23, 880. doi: 10.1116/1.1931687

    133. [133]

      (133) Kalinowski, J. J. Phys. D-Appl. Phys. 1999, 32, 179.

    134. [134]

      (134) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866. doi: 10.1021/ja0533996

    135. [135]

      (135) Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D.W.; Grubisha, D.S.; Bennett, D.W. Chem. Phys. Lett. 1999, 313, 741. doi: 10.1016/S0009-2614(99)01060-X

    136. [136]

      (136) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J.J. Am. Chem. Soc. 2009, 131, 7158. doi: 10.1021/ja9013166

    137. [137]

      (137) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Whitesides, G. M.J. Phys. Chem. C 2012, 116, 14139. doi: 10.1021/jp303072a

    138. [138]

      (138) Pakoulev, A. V.; Burtman, V. J. Phys. Chem. C 2009, 113,21413.

    139. [139]

      (139) Conklin, D.; Nanayakkara, S.; Park, T. H.; Lagadec, M. F.;Stecher, J. T.; Therien, M. J.; Bonnell, D. A. Nano Lett. 2012,12, 2414. doi: 10.1021/nl300400a

    140. [140]

      (140) Lu, Q.; Yao, C.;Wang, X. H.;Wang. F. S. J. Phys. Chem. C2012, 116, 17853. doi: 10.1021/jp2119923

    141. [141]

      (141) Fadjie-Djomkam, A. B.; Ababou-Girard, S.; Hiremath, R.;Herrier, C.; Fabre, B.; Solal, F.; det, C. J. Appl. Phys. 2011,110, 083708. doi: 10.1063/1.3651401

    142. [142]

      (142) Salomon, A.; Shpaisman, H.; Seitz, O.; Boecking, T.; Cahen,D. J. Phys. Chem. C 2008, 112, 3969. doi: 10.1021/jp710985b

    143. [143]

      (143) Chu, C.W.; Na, J. S.; Parsons, G. N. J. Am. Chem. Soc. 2007,129, 2287. doi: 10.1021/ja064968s

    144. [144]

      (144) Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D. J. Phys. Chem. B 2002, 106, 2813. doi: 10.1021/jp013476t

    145. [145]

      (145) Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.;Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M.J. Am. Chem. Soc. 2001, 123, 5075. doi: 10.1021/ja004055c

    146. [146]

      (146) York, R. L.; Nguyen, P. T.; Slowinski, K. J. Am. Chem. Soc.2003, 125, 5948. doi: 10.1021/ja0211353

    147. [147]

      (147) Slowinski, K.; Chamberlain, R. V.; Miller, C. J.; Majda, M.J. Am. Chem. Soc. 1997, 119, 11910. doi: 10.1021/ja971921l

    148. [148]

      (148) Thuo, M. M.; Reus,W. F.; Nijhuis, C. A.; Barber, J. R.; Kim,C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011,133, 2962. doi: 10.1021/ja1090436

    149. [149]

      (149) Chiechi, R. C.;Weiss, E. A.; Dickey, M. D.; Whitesides, G. M.Angew. Chem. Int. Edit. 2008, 47, 142.

    150. [150]

      (150) Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k

    151. [151]

      (151) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N.J. J. Am. Chem. Soc. 2006, 128, 2135. doi: 10.1021/ja057316x

    152. [152]

      (152) Cui, X. D.; Zarate, X.; Tomfohr, J.; Sankey1, O. F.; Primak, A.;Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S.M. Nanotechnology 2002, 13, 5. doi: 10.1088/0957-4484/13/1/302

    153. [153]

      (153) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. J. Am. Chem. Soc.2004, 126, 14287. doi: 10.1021/ja046274u

    154. [154]

      (154) Smaali, K.; Cle'ment, N.; Patriarche, G.; Vuillaume, D. ACS Nano 2012, 6, 4639. doi: 10.1021/nn301850g

    155. [155]

      (155) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Phys. Chem. C 2010, 114, 20431. doi: 10.1021/jp104760b

    156. [156]

      (156) Creager, S.; Yu, C. J.; Bamdad, C.; Connor, S. O.; MacLean,T.; Lam, E.; Chong, Y.; Olsen, G. T.; Luo, J. Y.; zin, M.;Kayyem, J. F. J. Am. Chem. Soc. 1999, 121, 1059. doi: 10.1021/ja983204c

    157. [157]

      (157) Wang,W. Y.; Lee, T.; Reed, M. A. J. Phys. Chem. B 2004, 108,18398. doi: 10.1021/jp048904k

    158. [158]

      (158) Lee, T.;Wang,W. Y.; Zhang, J. J.; Su, J.; Klemic, J. F.; Reed,M. A. Curr. Appl. Phys. 2005, 5, 213. doi: 10.1016/j.cap.2003.11.088

    159. [159]

      (159) Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725. doi: 10.1021/nl202495k

    160. [160]

      (160) Kim, B. S.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2011, 133, 19864. doi: 10.1021/ja207751w

    161. [161]

      (161) Liu, K.; Li, G. R.;Wang, X. H.;Wang, F. S. J. Phys. Chem. C2008, 112, 4342.

    162. [162]

      (162) He, J.; Chen, F.; Li, J.; Sankey, O. F.; Terazono, Y.; Herrero,C.; Gust, D.; Moore, T. A.; Moore, A. L.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 1384. doi: 10.1021/ja043279i

    163. [163]

      (163) Sakaguchi, H.; Hirai, A.; Iwata, F.; Sasaki, A.; Nagamura, T.Appl. Phys. Lett. 2001, 79, 3708. doi: 10.1063/1.1421233

    164. [164]

      (164) Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong,W. J.;García-Suarez, V. M.; Otten, J. L. H.; Buiter, P.; Hummelen, J.C.; Lambert, C. J.;Wandlowski, T. J. Am. Chem. Soc. 2012,134, 5262. doi: 10.1021/ja211555x

    165. [165]

      (165) Liu, K.;Wang, X. H.;Wang, F. S. ACS Nano 2008, 2, 2315.doi: 10.1021/nn800475a

    166. [166]

      (166) Akkerman, H. B.; de Boer, B. J. Condens. Matter Phys. 2008,20, 013001. doi: 10.1088/0953-8984/20/01/013001

    167. [167]

      (167) Moth-Poulsen, K.; Patrone, L.; Stuhr-Hansen, N.; Christensen,J. B.; Bour in, J. P.; Bjørnholm, T. Nano Lett. 2005, 5, 783.doi: 10.1021/nl050032q

    168. [168]

      (168) Guo, X. F.; Small, J. P.; Klare, J. E.;Wang, Y. L.; Purewal, M.S.; Tam, I.W.; Hong, B. H.; Caldwell, R.; Huang, L. M.;O'Brien, S.; Yan, J. M.; Breslow, R.;Wind, S. J.; Hone, J.;Kim, P.; Nuckolls, C. Science 2006, 311, 356. doi: 10.1126/science.1120986

    169. [169]

      (169) Feldmen, A.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C.Accounts Chem. Res. 2008, 41, 1731.

    170. [170]

      (170) Qian, S.; Guo, X. F.; Steigerwald, M. L.; Nuckolls, C. Chem. Asian J. 2010, 5, 1040. doi: 10.1002/asia.200900565

    171. [171]

      (171) Cao, Y.; Liu, S.; Shen, Q.; Yan, K.; Li, P. J.; Xu, J.; Yu, D. P.;Steigerwald, M. L.; Nuckolls, C.; Liu, Z. F.; Guo, X. F. Adv. Funct. Mater. 2009, 19, 2743. doi: 10.1002/adfm.v19:17

    172. [172]

      (172) Cao, Y.;Wei, Z. M.; Liu, S.; Shen, Q.; Gan, L.; Shi, S. J.; Guo,X. F.; Xu,W.; Steigerwald, M. L.; Liu, Z. F.; Zhu, D. B.Angew. Chem. Int. Edit. 2010, 49, 6319. doi: 10.1002/anie.201001683


  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    3. [3]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    15. [15]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    16. [16]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

Metrics
  • PDF Downloads(1010)
  • Abstract views(1158)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return