Citation: ZHAO Pei-Zhu, LI Lin-Yan, XU Sheng-Ming, ZHANG Qin. Synthesis and Structural Transformations of (Gd1-xCex)2Zr2O7+x: An Analogue for Pu Immobilization[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1168-1172. doi: 10.3866/PKU.WHXB201304013 shu

Synthesis and Structural Transformations of (Gd1-xCex)2Zr2O7+x: An Analogue for Pu Immobilization

  • Received Date: 17 December 2012
    Available Online: 1 April 2013

    Fund Project: 国家自然科学基金委员会和中国工程物理研究院联合基金(11176014)资助项目 (11176014)

  • Gd2Zr2O7 is a well known host for nuclear waste immobilization because of the high neutron absorption cross section of Gd and low energy transformation between ordered pyrochlore and disordered defect-fluorite structures. Pyrochlore Gd2Zr2O7 was synthesized at relatively low temperature (compared with traditional high temperature solid-state reaction) using Gd(NO3)3·nH2O, Zr(NO3)4·nH2O as a starting material and a small amount of NaF as fluxing agent. Ce4+ was used as an analogue for Pu4+ and its immobilization behavior in Gd2Zr2O7 was studied in a series of solidified forms comprising (Gd1-xCex)2Zr2O7+x (0≤x≤0.6). Powder X-ray diffraction (XRD) data showed that the sample structure transformed from pyrochlore to defect-fluorite type with increasing x but maintained constant unit cell volumes. As x was increased to 0.6, the diffraction peaks showed broadening, suggesting considerable lattice distortion. When x=1, i.e., all Gd3+ are placed by Ce4+, the product was not Ce2Zr2O8, but a phase separated mixture of tetra nal (Zr0.88Ce0.12)O2 and an ideal fluorite (Ce0.75Zr0.25)O2. Leach rate measurements indicated that the leach rate of Gd3+, Zr4+, Ce4+ was low when x≤0.2, but increased significantly when x≥0.4. This suggests that the substitution rate of Pu4+ for Gd3+ should not be more than 40% when Gd2Zr2O7 used as the host matrix for Pu4+.

  • 加载中
    1. [1]

      (1) Moriga, T.; Yoshiasa, A.; Kanamaru, F.; Koto, K.; Yoshimura,M.; Somiya, S. Solid State Ionics 1989, 31 (4), 319.doi: 10.1016/0167-2738(89)90472-4

    2. [2]

      (2) Nyman, H.; Andersson, S.; Hyde, B. G.; O'Keeffe, M. J. SolidState Chem. 1978, 26, 123." target=_blank>10.1016/0167-2738(89)90472-4

    3. [3]

      (2) Nyman, H.; Andersson, S.; Hyde, B. G.; O'Keeffe, M. J. SolidState Chem. 1978, 26, 123.

    4. [4]

      (3) Raison, P. E.; Haire, R. G.; Sato, T.; Ogawa, T. Mater. Res. Symp.Proc. 1999, 556, 3. doi: 10.1557/PROC-556-3

    5. [5]

      (4) Kulkarni, N. K.; Sampath, S.; Venu pal, V. J. Nucl. Mater.2000, 281, 248. doi: 10.1016/S0022-3115(00)00336-6

    6. [6]

      (5) Li, H. J.; Chen, G.; Li, Z. H.; Zhou, C. Acta Phys. -Chim. Sin.2007, 23 (5), 761. [李鸿建, 陈刚, 李中华, 周超. 物理化学学报, 2007, 23 (5), 761.] doi: 10.3866/PKU.WHXB20070527

    7. [7]

      (6) Qu, Z. X.;Wan, C. L.; Pan,W. Chem. Mater. 2007, 19 (20),4913. doi: 10.1021/cm071615z

    8. [8]

      (7) Wu, D. C. Chinese Journal of Nuclear Science and Engineering1992, 12 (3), 280. [吴德昌. 核科学与工程, 1992, 12 (3), 280.]" target=_blank>10.1557/PROC-556-3

    9. [9]

      (4) Kulkarni, N. K.; Sampath, S.; Venu pal, V. J. Nucl. Mater.2000, 281, 248. doi: 10.1016/S0022-3115(00)00336-6

    10. [10]

      (5) Li, H. J.; Chen, G.; Li, Z. H.; Zhou, C. Acta Phys. -Chim. Sin.2007, 23 (5), 761. [李鸿建, 陈刚, 李中华, 周超. 物理化学学报, 2007, 23 (5), 761.] doi: 10.3866/PKU.WHXB20070527

    11. [11]

      (6) Qu, Z. X.;Wan, C. L.; Pan,W. Chem. Mater. 2007, 19 (20),4913. doi: 10.1021/cm071615z

    12. [12]

      (7) Wu, D. C. Chinese Journal of Nuclear Science and Engineering1992, 12 (3), 280. [吴德昌. 核科学与工程, 1992, 12 (3), 280.]

    13. [13]

      (8) Wang, S. X.;Wang, L. M.; Ewing, R. C.; Kutty, K. V. G. Nucl.Instrum. Methods Phys. Res. Sec. B 2000, 169 (1-4), 135.doi: 10.1016/S0168-583X(00)00030-6

    14. [14]

      (9) Wang, S. X.; Begg, B. D.;Wang, L. M.; Ewing, R. C.;Weber,W. J.; Kutty, K. V. G. J. Mater. Res. 1999, 14 (12), 4470.doi: 10.1557/JMR.1999.0606

    15. [15]

      (10) Weber,W. J.; Ewing, R. C. Science 2000, 289, 2051. doi: 10.1126/science.289.5487.2051

    16. [16]

      (11) Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S. Mater. Sci.Eng. 2010, 9, 012001." target=_blank>10.1016/S0168-583X(00)00030-6

    17. [17]

      (9) Wang, S. X.; Begg, B. D.;Wang, L. M.; Ewing, R. C.;Weber,W. J.; Kutty, K. V. G. J. Mater. Res. 1999, 14 (12), 4470.doi: 10.1557/JMR.1999.0606

    18. [18]

      (10) Weber,W. J.; Ewing, R. C. Science 2000, 289, 2051. doi: 10.1126/science.289.5487.2051

    19. [19]

      (11) Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S. Mater. Sci.Eng. 2010, 9, 012001.

    20. [20]

      (12) Cleave, A.; Grimes, R.; Sickafus, K. Philos. Mag. 2005, 85 (9),967. doi: 10.1080/14786430412331314672

    21. [21]

      (13) Ewing, R. C.;Weber,W. J.; Lian, J. J. Appl. Phys. 2004, 95,5949. doi: 10.1063/1.1707213

    22. [22]

      (14) Lu, X. R.; Dong, F. Q.; Hu, S.;Wang, X. L.;Wu, Y. L. ActaPhys. Sin. 2012, 61 (15), 152401-1. [卢喜瑞, 董发琴, 胡淞,王晓丽, 吴彦霖. 物理学报, 2012, 61 (15), 152401-1.]doi: 10.7498/aps.61.152401

    23. [23]

      (15) Zhong, Y. H.; Tang, J. Y.; Mao, X. L.; Lu, X. R.; Yang, Y. S.Journal of Southwest University of Science and Tchnology 2011,26 (2), 10. [钟宇宏, 唐敬友, 毛雪丽, 卢喜瑞, 杨玉山. 西南科技大学学报, 2011, 26 (2), 10.]" target=_blank>10.1080/14786430412331314672

    24. [24]

      (13) Ewing, R. C.;Weber,W. J.; Lian, J. J. Appl. Phys. 2004, 95,5949. doi: 10.1063/1.1707213

    25. [25]

      (14) Lu, X. R.; Dong, F. Q.; Hu, S.;Wang, X. L.;Wu, Y. L. ActaPhys. Sin. 2012, 61 (15), 152401-1. [卢喜瑞, 董发琴, 胡淞,王晓丽, 吴彦霖. 物理学报, 2012, 61 (15), 152401-1.]doi: 10.7498/aps.61.152401

    26. [26]

      (15) Zhong, Y. H.; Tang, J. Y.; Mao, X. L.; Lu, X. R.; Yang, Y. S.Journal of Southwest University of Science and Tchnology 2011,26 (2), 10. [钟宇宏, 唐敬友, 毛雪丽, 卢喜瑞, 杨玉山. 西南科技大学学报, 2011, 26 (2), 10.]

    27. [27]

      (16) Reid, D. P.; Stennett, M. C.; Hyatt, N. C. J. Solid State Chem.2012, 191, 2. doi: 10.1016/j.jssc.2011.12.039

    28. [28]

      (17) Patwe, S. J.; Ambekar, B. R.; Tyagi, A. K. J. Alloy. Compd.2005, 389 (1-2), 243. doi: 10.1016/j.jallcom.2004.06.094

    29. [29]

      (18) Jantzen, C. M.; Bibler, N. E.; Beam, D. C.; Ramsey,W. G.;Waters, B. J. Standard Test Method Relative to Durability ofNuclear Waste Glasses: the Product Consistency Test (PCT),Version 5.0, 1991." target=_blank>10.1016/j.jssc.2011.12.039

    30. [30]

      (17) Patwe, S. J.; Ambekar, B. R.; Tyagi, A. K. J. Alloy. Compd.2005, 389 (1-2), 243. doi: 10.1016/j.jallcom.2004.06.094

    31. [31]

      (18) Jantzen, C. M.; Bibler, N. E.; Beam, D. C.; Ramsey,W. G.;Waters, B. J. Standard Test Method Relative to Durability ofNuclear Waste Glasses: the Product Consistency Test (PCT),Version 5.0, 1991.

    32. [32]

      (19) Wang, G. B.;Wang, Y. J.; Zhao, X. Q.; Song, B. J. ActaPhys. -Chim. Sin. 2005, 21 (5), 84. [王桂斌, 王延吉, 赵新强,宋宝俊. 物理化学学报, 2005, 21 (5), 84.] doi: 10.3866/PKU.WHXB20050117

    33. [33]

      (20) Chen, R.; ng, Y. J.; Li, Q.; Dou, T.; Zhao, Z.; Xu, Q. H. ActaPhys. -Chim. Sin. 2009, 25 (3), 539. [陈然, 巩雁军, 李强,窦涛, 赵震, 徐庆虎. 物理化学学报, 2009, 25 (3), 539.]doi: 10.3866/PKU.WHXB20090323

    34. [34]

      (21) Subramanian, M. A.; Sleight, A.W. Handbook on the Physicsand Chemistry of Rare Earths; Elsevier Science Publishers:Oxford, UK, 1993; Vol. 16, pp 225-240." target=_blank>10.3866/PKU.WHXB20050117

    35. [35]

      (20) Chen, R.; ng, Y. J.; Li, Q.; Dou, T.; Zhao, Z.; Xu, Q. H. ActaPhys. -Chim. Sin. 2009, 25 (3), 539. [陈然, 巩雁军, 李强,窦涛, 赵震, 徐庆虎. 物理化学学报, 2009, 25 (3), 539.]doi: 10.3866/PKU.WHXB20090323

    36. [36]

      (21) Subramanian, M. A.; Sleight, A.W. Handbook on the Physicsand Chemistry of Rare Earths; Elsevier Science Publishers:Oxford, UK, 1993; Vol. 16, pp 225-240.

    37. [37]

      (22) Perez-Y-Jorba, M. Ann. Chim. 1962, 7, 479. (23) Subramanian, M. A.; Aravamudan, G.; Rao, G. V. S. Prog.Solid State Chem. 1983, 15, 55. doi: 10.1016/0079-6786(83)90001-8

    38. [38]

      (24) Mandal, B. P.; Shukla, R.; Achary, S. N.; Tyagi, A. K. Inorg.Chem. 2010, 49, 10415. doi: 10.1021/ic1018482

    39. [39]

      (25) McCullough, J. D.; Britton, J. D. J. Am. Chem. Soc. 1952, 74,5225." target=_blank>10.1016/0079-6786(83)90001-8

    40. [40]

      (24) Mandal, B. P.; Shukla, R.; Achary, S. N.; Tyagi, A. K. Inorg.Chem. 2010, 49, 10415. doi: 10.1021/ic1018482

    41. [41]

      (25) McCullough, J. D.; Britton, J. D. J. Am. Chem. Soc. 1952, 74,5225.

    42. [42]

      (26) Ringwood, A. E.; Kesson, S. E.; Reeve, K. D.; Levins, D. M.;Ramm, E. J. Radioactive Waste Forms for the Future; ElsevierScience: Amersterdam, 1988; pp 233-234. (27) Icenhower, J. P.;Weber,W. J.; Hess, N. J.; Thevuthasen, S.;Begg, B.; McGrail, P.; Rodriguez, E. A.; Steele, J. L.; Geiszler,K. N. Scientific Basis for Nuclear Waste Management XXVI;Material Research Society: Pittsburgh, 2003; pp 23-30.


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    14. [14]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    15. [15]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    19. [19]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    20. [20]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

Metrics
  • PDF Downloads(659)
  • Abstract views(659)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return