Citation: HUANG Hai-Feng, JIA Jian-Ming, LU Han-Feng, ZHANG Hong-Hua, PAN Lie-Qun. Effect of Designed Zr/Ti Molar Ratio on the Photocatalytic Activity of Sr-Zr-Ti Mixed Oxide Catalysts under Visible Light[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1319-1326. doi: 10.3866/PKU.WHXB201304012 shu

Effect of Designed Zr/Ti Molar Ratio on the Photocatalytic Activity of Sr-Zr-Ti Mixed Oxide Catalysts under Visible Light

  • Received Date: 20 November 2012
    Available Online: 1 April 2013

    Fund Project: 国家自然科学基金(21107096)资助项目 (21107096)

  • A series of Sr-Zr-Ti (SZT) mixed oxide catalysts were prepared by a fractional-precipitation method. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and ultraviolet visible (UV-Vis) diffuse reflectance absorption spectra. Photocatalytic degradation of methylene blue was investigated to determine the photoactivity of the catalyst. It was shown that with a Zr/Ti ratio<1, the SZT mixed oxide catalysts showed improved photocatalytic activity. This was attributed to lattice defects creating active photocatalytic sites because of Zr4+ doping. For Zr/Ti ratios ≥1, the catalysts showed markedly improved photocatalytic activity because of new crystalline phases of SrZrO3 and TinO2n-1 (n=4, 9)that facilitated splitting and conduction for electron/hole. Typical SZT samples (Zr/Ti=4) showed the highest photocatalytic activity, with first-order reaction rate constant 13.5 times that of a SrTiO3 sample.

  • 加载中
    1. [1]

      (1) Yan, X. R.; Li, X. H.; Huo, M. L.; Guo,W.W.; ng, Y. J. Acta Phys. -Chim. Sin. 2001, 17, 23. [颜秀如, 李晓红, 霍明亮, 郭伟巍, 巩永进. 物理化学学报, 2001, 17, 23.] doi: 10.3866/PKU.WHXB20010105

    2. [2]

      (2) Kurokawa, H.; Yang, L. M.; Jacobson, C. P.; Jacobson, C. P.; DeJonghe, L. C.; Visco, S. J. Power Sources 2007, 164 (2), 510.doi: 10.1016/j.jpowsour.2006.11.048

    3. [3]

      (3) Huang, H. F.; Tang,W.; Chen, Y. F.; Chen, B. F. J. Mol. Catal.2005, 19 (5), 351. [黄海凤, 唐伟, 陈银飞, 陈碧芬. 分子催化, 2005, 19 (5), 351.]

    4. [4]

      (4) Lee, M. S.; Meyer, J. U. Sensors and Actuators B, Chemical2000, 68 (1-3), 293. doi: 10.1016/S0925-4005(00)00447-0

    5. [5]

      (5) Luo,W. J.; Li, Z. S.; Jiang, X. J.; Yu, T.; Liu, L. F.; Chen, X. Y.;Ye, J. H.; Zou, Z. G. Phys. Chem. Chem. Phys. 2008, 10, 6717.doi: 10.1039/b803996h

    6. [6]

      (6) Puangpetch, T.; Sreethawong, T.; Chavadej, S. Int. J. Hydrog. Energy 2010, 35, 6532.

    7. [7]

      (7) Wang, D.; Kako, T.; Ye, J. J. Phys. Chem. C 2009, 113, 3785.doi: 10.1021/jp807393a

    8. [8]

      (8) Chen, L.; Zhang, S. C.;Wang, L. Q.; Xue, D. F.; Yin, S. J. Crystal Growth 2009, 311, 746.

    9. [9]

      (9) Ryoko, K.; Tatsuya, I.; Hideki, K.; Akihiko, K. J. Phys. Chem. B2004, 108, 8992. doi: 10.1021/jp049556p

    10. [10]

      (10) Onishi, T. J. Top Catal. 2010, 53, 566. doi: 10.1007/s11244-010-9488-6

    11. [11]

      (11) Galinetto, P.; Casiraghi, A.; Mozzati, M. C.; Azzoni, C. B.;Norton, D.; Boatner, L. A. Ferroelectrics 2008, 368 (1), 120.doi: 10.1080/00150190802368248

    12. [12]

      (12) Hua, N. P.;Wu, Z. Y.; Du, Y. K.; Zou, Z. G.; Yang, P. Acta Phys. -Chim. Sin. 2005, 21 (10), 1085. [华南平, 吴遵义, 杜玉扣, 邹志刚, 杨平. 物理化学学报, 2005, 21 (10), 1085.] doi: 10.3866/PKU.WHXB20051004

    13. [13]

      (13) Lu, H. F.; Zhou, Y.; Xu, B. Q.; Chen, Y. F.; Liu, H. Z. Acta Phys. -Chim. Sin. 2008, 24 (3), 459. [卢晗锋, 周瑛, 徐柏庆, 陈银飞, 刘化章. 物理化学学报, 2008, 24 (3), 459.] doi: 10.3866/PKU.WHXB20080319

    14. [14]

      (14) Puangpetch, T.; Sreethawong, T.; Chavadej, S. Int. J. Hydrog. Energy 2010, 35, 6531. doi: 10.1016/j.ijhydene.2010.04.015

    15. [15]

      (15) Wei,W.; Dai, Y.; Guo, M.; Zhu, Y. Z.; Huang, B. B. J. Phys. Chem. C 2010, 114, 10917.

    16. [16]

      (16) Yang, J.; Li, D.;Wang, X. J. Solid State Chem. 2002, 165 (1),193. doi: 10.1006/jssc.2001.9526

    17. [17]

      (17) Tanaka, T.; Teramura Kentaro, Y. T. J. Photochem. Photobiol. A-Chem. 2002, 148 (1-3), 277. doi: 10.1016/S1010-6030(02)00054-0

    18. [18]

      (18) Kataoka, S.; Tompkins, D. T.; Zeltner,W. A. J. Photochem. Photobiol. A-Chem. 2002, 148 (1-3), 323. doi: 10.1016/S1010-6030(02)00059-X

    19. [19]

      (19) Pan, L. Q.; Lu, H. F.; Huang, H. F. Rare Earths 2011, 3 (29),284. [潘烈群, 卢晗锋, 黄海凤. 中国稀土学报, 2011, 3 (29),284.]

    20. [20]

      (20) Yu, C. L.; Fan, C. F.; Yu, J. M. Mater. Res. Bull. 2011, 46 (1),145.

    21. [21]

      (21) Tennakone, K.; Ileperuma, O. A.; Bandara, J. M. S.; Kiridena,W. C. B. Semicond. Sci. Technol. 1992, 7 (3), 424. doi: 10.1088/0268-1242/7/3B/109

    22. [22]

      (22) Wei, G. P.; Jiang, C. H.; Zhen,W.; Jin, D. R. Crystal Structure and Defects, 1st ed.; Code of Practice for Design andConstruction: Beijing, 2010; pp 5, 64-120. [魏光普, 姜传海,甄伟, 金灯仁. 晶体结构与缺陷, 第一版. 北京: 中国水利水电出版社; 2010: 5, 64-120.]

    23. [23]

      (23) Chen, J. Z. Modern Crystal Chemistry, 1st ed.; Science andTechnology Press: Beijin g, 2010; pp 140-160. [陈敬中. 现代晶体化学, 第一版. 北京: 科学技术出版社, 2010: 140-60.]

    24. [24]

      (24) Xu, Y. L. Basic of Oxide and Compound Semiconductor, 1st ed.;Xidian University Press: Xi'an, 1991. [徐毓龙. 氧化物与化合物半导体基础, 第一版. 西安: 西安电子科技大学出版社,1991.]

    25. [25]

      (25) Han,W. Q.;Wang, X. L. Appl. Phys. Lett. 2010, 2 (12), 3709.

    26. [26]

      (26) Walsh, F. C.;Wills, R. G. A. Electrochimica Acta 2010, 55,6342. doi: 10.1016/j.electacta.2010.05.011

    27. [27]

      (27) Chen, G. Y.; Simon, R. B.; Thomas, E. M. The Electrochemical Society 2002, 149 (8), A1092.

    28. [28]

      (28) Lakkis, S.; Schlenkcr, C.; Chakravcrty, B. K.; Buder, R.;Marezio, M. Physical Review B 1976, 14 (4), 1429.

    29. [29]

      (29) Masayuki,W.;Wakana, U.; Tetsusuke, H. Luminescence 2007,122-123, 393.

    30. [30]

      (30) Leandro, L.; Giuseppe, M. Physical Review B 2009, 79, 245133.doi: 10.1103/PhysRevB.79.245133

    31. [31]

      (31) Eyert, V.; Schwingenschl, U.; Eckern, U. Chemical Physics Letters 2004, 390, 151. doi: 10.1016/j.cplett.2004.04.015

    32. [32]

      (32) Xu, Y.; Schoonen, M. A. A. American Mineralogist 2000, 85,543.

    33. [33]

      (33) Liu, S.W.; Lu, M. K.; Song, C. F.;Wang, S. F.; Gu, F.; Cheng,X. F.; Xu, D.; Yuan, D. R. J. Functional Materials 2004, 35 (2),233. [刘素文, 吕孟凯, 宋春风, 王淑芬, 顾锋, 程秀风,许东, 袁多荣. 功能材料, 2004, 35 (2), 233.]


  • 加载中
    1. [1]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(568)
  • Abstract views(655)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return