Citation:
ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua. Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Physico-Chimica Sinica,
;2013, 29(06): 1297-1304.
doi:
10.3866/PKU.WHXB201304011
-
Nitrogen-doped hollow carbon microspheres (N-HCMS) were synthesized by carbonization of poly(dopamine). Platinum (Pt) nanoparticles (NPs) were deposited onto the N-HCMS via a microwaveassisted reduction process. The morphology, surface area, and pore size distribution of the N-HCMS supported Pt catalysts (Pt/N-HCMS) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and surface area and porosimetry measurements. The electrocatalytic properties of the Pt/N-HCMS catalyst towards oxygen-reduction reaction were investigated by cyclic voltammetry and linear sweep voltammetry. The Pt/N-HCMS catalyst showed almost double the specific mass activity of a commercial carbon supported Pt catalyst. This was attributed to a uniform dispersion of the Pt NPs and the unique mesoporous and hollow structure of N-HCMS. In addition, fast electron transfer processes were found to occur on the nitrogen doped N-HCMS and the catalyst exhibited excellent long-term stability. This work is of significance for the development of high-performance cathodic catalysts in fuel cells.
-
-
-
[1]
(1) Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.;Garland, N.; Myers, D.;Wilson, M.; Garzon, F.;Wood, D.;Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.;McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.;Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.;Yasuda, K.; Kimijima, K. I.; Iwashita, N. Chem. Rev. 2007, 107 (10), 3904. doi: 10.1021/cr050182l
-
[2]
(2) (a) Lim, B.; Jiang, M.; Camar , P. H. C.; Cho, E. C.; Tao, J.;Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324 (5932), 1302.doi: 10.1126/science.1170377
-
[3]
(b) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39 (6), 2184.
-
[4]
(3) Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. Angew. Chem. Int. Edit. 2008, 47 (19), 3588.
-
[5]
(4) Yu, X.; Ye, S. J. Power Sources 2007, 172 (1), 145. doi: 10.1016/j.jpowsour.2007.07.048
-
[6]
(5) Thompson, S. D.; Jordan, L. R.; Forsyth, M. Electrochim. Acta2001, 46 (10-11), 1657.
-
[7]
(6) (a)Wen, Z.;Wang, Q.; Zhang, Q.; Li, J. Electrochem. Commun.2007, 9 (8), 1867. doi: 10.1016/j.elecom.2007.04.016
-
[8]
(b) Sun, X.; Li, Y. Angew. Chem. Int. Edit. 2004, 43 (29), 3827.
-
[9]
(c) Su, F.; Zhao, X. S.;Wang, Y.;Wang, L.; Lee, J. Y. J. Mater. Chem. 2006, 16 (45), 4413.
-
[10]
(d) Huang, H.; Remsen, E. E.; Kowalewski, T.;Wooley, K. L.J. Am. Chem. Soc. 1999, 121 (15), 3805.
-
[11]
(e) Han, S.; Yun, Y.; Park, K.W.; Sung, Y. E.; Hyeon, T. Adv. Mater. 2003, 15 (22), 1922.
-
[12]
(f) Gill, I.; Ballesteros, A. J. Am. Chem. Soc. 1998, 120 (34),8587.
-
[13]
(g) Du, H.; Li, B.; Kang, F.; Fu, R.; Zeng, Y. Carbon 2007, 45 (2), 429.
-
[14]
(7) Bang, J. H. Electrochim. Acta 2011, 56 (24), 8674. doi: 10.1016/j.electacta.2011.07.066
-
[15]
(8) (a) Fang, B.; Kim, J. H.; Lee, C.; Yu, J. S. J. Phys. Chem. C2007, 112 (2), 639.
-
[16]
(b) F?ç?c?lar, B.; Bayrakçeken, A.; Eroglu, I. Int. J. Hydrog. Energy 2010, 35 (18), 9924.
-
[17]
(9) (a) Jun, S.; Choi, M.; Ryu, S.; Lee, H. Y.; Ryoo, R. OrderedMesoporous Carbon Molecular Sieves with FunctionalizedSurfaces. In Studies in Surface Science and Catalysis; Sang-EonPark, R. R.W. S. A. C.W. L., Jong-San, C., Eds.; Elsevier:2003; Vol. 146, p 37.
-
[18]
(b) Tang, H.; Chen, J. H.; Huang, Z. P.;Wang, D. Z.; Ren, Z. F.;Nie, L. H.; Kuang, Y. F.; Yao, S. Z. Carbon 2004, 42 (1), 191.
-
[19]
(10) (a) Besson, E.; Mehdi, A.; Reye, C.; Corriu, R. J. P. J. Mater. Chem. 2009, 19 (27), 4746. doi: 10.1039/b902568e
-
[20]
(b) Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J.Chem. Mater. 2002, 15 (1), 275.
-
[21]
(11) (a) Chen, Y.;Wang, J.; Liu, H.; Li, R.; Sun, X.; Ye, S.; Knights,S. Electrochem. Commun. 2009, 11 (10), 2071. doi: 10.1016/j.elecom.2009.09.008
-
[22]
(b) Saha, M. S.; Li, R.; Sun, X.; Ye, S. Electrochem. Commun.2009, 11 (2), 438.
-
[23]
(12) (a) Higgins, D. C.; Meza, D.; Chen, Z. J. Phys. Chem. C 2010,114 (50), 21982. doi: 10.1021/jp106814j
-
[24]
(b) Chen, Y.;Wang, J.; Liu, H.; Banis, M. N.; Li, R.; Sun, X.;Sham, T. K.; Ye, S.; Knights, S. J. Phys. Chem. C 2011, 115 (9),3769.
-
[25]
(c) Li, X.; Park, S.; Popov, B. N. J. Power Sources 2010, 195 (2), 445.
-
[26]
(d) Liu, Z.; Su, F.; Zhang, X.; Tay, S.W. ACS Applied Materials & Interfaces 2011, 3 (10), 3824.
-
[27]
(13) (a) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science2009, 324 (5923), 71. doi: 10.1126/science.1170051
-
[28]
(b) Shao, Y.; Sui, J.; Yin, G.; Gao, Y. Applied Catalysis B: Environmental 2008, 79 (1), 89.
-
[29]
(c)Wang, X.; Dai, S. Angew. Chem. Int. Edit. 2010, 49 (37),6664.
-
[30]
(d) Ma, G.; Jia, R.; Zhao, J.;Wang, Z.; Song, C.; Jia, S.; Zhu, Z.J. Phys. Chem. C 2011, 115 (50), 25148.
-
[31]
(e) Shanmugam, S.; Osaka, T. Chem. Commun. 2011, 47 (15),4463.
-
[32]
(f) Yang,W.; Fellinger, T. P.; Antonietti, M. J. Am. Chem. Soc.2010, 133 (2), 206.
-
[33]
(g) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A.L. B.; Marques, E. P.;Wang, H.; Zhang, J. Electrochim. Acta2008, 53 (15), 4937.
-
[34]
(14) Xiao, C.; Chu, X.; Yang, Y.; Li, X.; Zhang, X.; Chen, J. Biosens. Bioelectron. 2011, 26 (6), 2934. doi: 10.1016/j.bios.2010.11.041
-
[35]
(15) Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Angew. Chem. Int. Edit. 2009, 48 (26), 4751. doi: 10.1002/anie.v48:26
-
[36]
(16) Maiyalagan, T.; Viswanathan, B.; Varadaraju, U. V.Electrochem. Commun. 2005, 7 (9), 905. doi: 10.1016/j.elecom.2005.07.007
-
[37]
(17) (a) Su, F.; Poh, C. K.; Tian, Z.; Xu, G.; Koh, G.;Wang, Z.; Liu,Z.; Lin, J. Energ. Fuel 2010, 24 (7), 3727. doi: 10.1021/ef901275q
-
[38]
(b) Stein, A.;Wang, Z.; Fierke, M. A. Adv. Mater. 2009, 21 (3),265.
-
[39]
(18) Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Chem. Mater. 1997,9 (2), 609. doi: 10.1021/cm960430h
-
[40]
(19) Ramgir, N. S.; Hwang, Y. K.; Mulla, I. S.; Chang, J. S. Solid State Sci. 2006, 8 (3-4), 359.
-
[41]
(20) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13. doi: 10.1016/S0378-7753(01)00921-1
-
[42]
(21) Xu, Y.; Lin, X. Electrochim. Acta 2007, 52 (16), 5140.doi: 10.1016/j.electacta.2007.02.037
-
[43]
(22) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105 (15), 2890.doi: 10.1021/jp0101312
-
[44]
(23) Hayashi, A.; Notsu, H.; Kimijima, K. I.; Miyamoto, J.; Yagi, I.Electrochim. Acta 2008, 53 (21), 6117. doi: 10.1016/j.electacta.2008.01.110
-
[45]
(24) Liu, L.; Huang, Z.;Wang, D.; Scholz, R.; Pippel, E.Nanotechnology 2011, 22 (10), 105604. doi: 10.1088/0957-4484/22/10/105604
-
[46]
(25) Li, Y. H.; Hung, T. H.; Chen, C.W. Carbon 2009, 47 (3), 850.doi: 10.1016/j.carbon.2008.11.048
-
[1]
-
-
-
[1]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[4]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[5]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[6]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[7]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[8]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[9]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[10]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[11]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[12]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[13]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[14]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[15]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[16]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[17]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[18]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[19]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[20]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[1]
Metrics
- PDF Downloads(1433)
- Abstract views(1186)
- HTML views(10)