Citation: ZHANG Li, CHEN Lang, WANG Chen, WU Jun-Ying. Molecular Dynamics Study of the Effect of H2O on the Thermal Decomposition of α Phase CL-20[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1145-1153. doi: 10.3866/PKU.WHXB201303221 shu

Molecular Dynamics Study of the Effect of H2O on the Thermal Decomposition of α Phase CL-20

  • Received Date: 31 January 2013
    Available Online: 22 March 2013

  • The response of the mechanisms of the α polymorph of CL-20 (α-CL-20) to high temperature is important for understanding the phenomenon of shock initiation, shock ignition, and detonation. The thermal decomposition of α-CL-20 hydrate and pure α-CL-20 were studied by ReaxFF reactive molecular dynamics simulations to obtain the time evolution of water molecules and the effect of H2O on the mechanisms of CL-20 at high temperatures. It was determined that the initial decomposition mechanisms of CL-20 are not dependent on the presence of water, but the secondary reaction pathways are. At low temperatures (T<1500 K), there is no relationship between the H2O, hydrate CL-20, and pure CL-20 systems, as the mechanism is only the dissociation of the N―NO2 bond to form the NO2 radical. At high temperatures (1500 K≤T≤2500 K), water molecules act as a reactant or form catalytic systems with NO2 radical to form OH radical, leading to the formation of O2, H2O2, and other products. Water molecules accelerate the secondary stage reaction of hydrate systems, leading to increased secondary reaction rates and number of NO2 radicals in the CL-20 hydrate compared with the pure CL-20 system. At very high temperatures (T>2500 K), the dissociation of water molecules competes with the initial thermal decomposition pathway of CL-20, leading to a larger rate constant for the pure CL-20 than for the hydrate CL-20.

  • 加载中
    1. [1]

      (1) Nielsen, A. T.; Chafun, A. P.; Christian, S. L.; Moore, D.W.;Nadler, M. P.; Nissan, R. A.; Vanderah, D. J.; Gilardi, R. D.;George, C. F.; Flippen, J. L. Tetrahedron 1998, 54, 11793.

    2. [2]

      (2) Li, J.; Brill, T. B. Propellants, Explosive, Pyrotechnics 2007, 32,326.

    3. [3]

      (3) Tappan, B.; Brill, T. B. Propellants, Explosives, Pyrotechnics2003, 28, 223.

    4. [4]

      (4) Simpson, R. L.; Urtiev, P. A.; Ornellas, D. L.; Moody, G. L.;Scribner, K. J.; Hoffman, D. M. Propellant, Explosives,Pyrotechnics 1997, 22, 249.

    5. [5]

      (5) Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.;Leszczynski, J. J. Phys. Chem. A 2005, 109, 2964. doi: 10.1021/jp045292v

    6. [6]

      (6) Isayev, O.; rb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem.B 2008, 112, 11005. doi: 10.1021/jp804765m

    7. [7]

      (7) Zhang, L.; Chen, L.;Wang, C.;Wu, J. Y. Chinese Journal ofExplosives & Propellants 2012, 35 (4), 5. [张力, 陈朗,王晨, 伍俊英. 火炸药学报, 2012, 35 (4), 5.]

    8. [8]

      (8) van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A2001, 105, 9396. doi: 10.1021/jp004368u

    9. [9]

      (9) Han, S.; van Duin, A. C. T.; ddard,W. A., III; Strachan, A.J. Phys. Chem. B 2011, 115, 6534. doi: 10.1021/jp1104054

    10. [10]

      (10) Rom, N.; Zybin, S. V.; van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v

    11. [11]

      (11) Guo, F.; Cheng, X.; Zhang, H. J. Phys. Chem. A 2012, 116,3514. doi: 10.1021/jp211914e

    12. [12]

      (12) Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Phys. Rev. Lett. 2003, 91 (9), 098301. doi: 10.1103/PhysRevLett.91.098301

    13. [13]

      (13) Strachan, A.; Kober, E.; van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122, 54502.

    14. [14]

      (14) Zhang, L. Z.; Zybin, S. V.; van Duin, A. C. T.; Dasgupta, S.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619. doi: 10.1021/jp901353a

    15. [15]

      (15) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin.2012, 28 (11), 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28 (11), 2605.] doi: 10.3866/PKU.WHXB201208031

    16. [16]

      (16) Zhou, T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w

    17. [17]

      (17) Budzine, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B2009, 113, 13142. doi: 10.1021/jp9016695

    18. [18]

      (18) Fu, X. C.; Shen,W. X.; Yao, T. Y.; Hou,W. H. PhysicalChemistry, 5th ed.; Higher Education Press: Beijing, 2007; pp154-484. [傅献彩, 沈文霞, 姚天扬, 侯文华. 物理化学. 第五版. 北京: 高等教育出版社, 2007: 154-484.]

    19. [19]

      (19) Patil, D. G.; Brill, T. B. Combust. Flame 1991, 87, 145. doi: 10.1016/0010-2180(91)90164-7

    20. [20]

      (20) Pace, M. D. J. Phys. Chem. 1991, 95, 5858. doi: 10.1021/j100168a028

    21. [21]

      (21) Dong, L. M.; Li, X. D.; Yang, R. J. Acta Phys. -Chim. Sin. 2008,24 (6), 997. [董林茂, 李晓东, 杨荣杰. 物理化学学报, 2008,24 (6), 997.] doi: 10.3866/PKU.WHXB20080614

    22. [22]

      (22) Nedelko, V. V.; Chukanov, N. V.; Raevski, A. V.; Korsounskii,B. L.; Larikova, T. S.; Kolesova, O. I.; Volk, F. Propellants,Explosives, Pyrotechnics 2000, 5, 255.

    23. [23]

      (23) Shimojo, F.; Ohmura, S.; Kalia, R. K.; Nakano, A.; Vashishta, P.Phys. Rev. Lett. 2010, 104 (12), 126102. doi: 10.1103/PhysRevLett.104.126102

    24. [24]

      (24) Ohmura, S.; Shimojo, F.; Kalia, R. K.; Kunaseth, M.; Nakano,A.; Vashishta, P. J. Chem. Phys. 2011, 134, 244702. doi: 10.1063/1.3602326

    25. [25]

      (25) Wu, J. C.; Fried, L. E.; Yang, L. H; ldman, N.; Baste, S.Nature Chemistry 2009, 1, 57. doi: 10.1038/nchem.130

    26. [26]

      (26) Chang, J.; Lian, P.;Wei, D. Q.; Chen, X. R.; Zhang, Q. M.; ng, Z. Z. Phys. Rev. Lett. 2010, 105 (18), 188302. doi: 10.1103/PhysRevLett.105.188302


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(818)
  • Abstract views(1010)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return