Citation: YANG Han-Pei, ZHANG Ying-Chao, FU Xiao-Fei, SONG Shuang-Shuang, WU Jun-Ming. Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1327-1335. doi: 10.3866/PKU.WHXB201303212
-
Carbon nanotubes (CNTs) have been ultrasonically treated with the mixed acid (H2SO4/HNO3, 3:1, volume ratio), embedding the active -COOH groups onto the surface of the CNTs. As a result, the acid-treated CNTs serve as chemical reactors for subsequent grafting of L-lysine or octadecylamine (ODA). It was revealed that L-lysine and ODA covalently bond to the surface of the oxidized CNTs through amidation of carboxylic acid groups (CNTs-COOH) and lysine or ODA via intermediate acyl chlorides (CNTs-COCl). The hydrophilic and lipophilic CNTs have high aquatic and ethanol solubility, and the solubility of the surface modified CNTs in water and ethanol were measured to be as high as 6.85 and 10.15 mg·mL-1, respectively. The surface nature of modified CNTs and the properties of TiO2-CNTs composite photocatalysts, which were prepared through sol-gel or low temperature hydrothermal synthesis, were investigated by Fourier transform infrared (FTIR), laser Raman, X-ray diffraction (XRD), Brunauer-Emmett-Teller N2 adsorption, transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS). Improved photocatalytic performance was observed for TiO2 coupled by hydrophilic or lipophilic CNT, which were obtained by low temperature hydrothermal and sol-gel synthesis, respectively, and it was revealed that there is an affinity between the photocatalytic performance of TiO2-CNTs hybrids and the dispersibility of CNTs. It is proposed that the improved photocatalytic activity of CNT-TiO2 compared with pure TiO2 photocatalysts can be mainly attributed to the homogeneous and dense dispersion of TiO2 on the modified CNTs and the intimate contact between TiO2 and CNTs, which results in dense heterojunctions at the interface of TiO2 and CNTs through the Ti-O-C structure.
-
-
[1]
(1) Hu, L. B.; Hecht, D. S.; Gruner, G. Chem. Rev. 2010, 110, 5790.doi: 10.1021/cr9002962
-
[2]
(2) Wu, Y. C.; Liu, X. L.; Ye, M.; Xie, T.; Huang, X. M. Acta Phys. - Chim. Sin. 2008, 24, 97. [吴玉程, 刘晓璐, 叶敏, 解挺,黄新民. 物理化学学报, 2008, 24, 97.] doi: 10.3866/PKU.WHXB20080117
-
[3]
(3) Zhang, K.; Zhang, F.; Chen, M.; Oh,W. Ultrason. Sonochem.2011, 18, 765. doi: 10.1016/j.ultsonch.2010.11.008
-
[4]
(4) Barkauskasa, J.; Stankeviciene, I.; Selskis, A. Sep. Purif. Technol. 2010, 71, 331. doi: 10.1016/j.seppur.2009.12.019
-
[5]
(5) Stobinski, L.; Lesiak, B.; Kövér, L. J. Alloy. Compd. 2010, 501,77. doi: 10.1016/j.jallcom.2010.04.032
-
[6]
(6) Tian, R.;Wang, X.; Li, M.; Hu, H. Appl. Surf. Sci. 2008, 255,3294. doi: 10.1016/j.apsusc.2008.09.040
-
[7]
(7) Dyke, C. A.; Stewart, M. P.; Tour, J. M. J. Am. Chem. Soc. 2005,127, 4497. doi: 10.21/ja042828h
-
[8]
(8) Zeng, L.; Zhang, L.; Barron, A. R. Nano Lett. 2005, 5, 2001.doi: 10.1021/nl0514994
-
[9]
(9) Balasubramanian, K.; Burghard, M. Small 2005, 1, 180.
-
[10]
(10) Ye, Q.; Zhang, Y.; Li, M.; Shi, Y. Acta Phys. -Chim. Sin. 2012,28, 1223. [叶青, 张瑜, 李茗, 施耀. 物理化学学报,2012, 28, 1223.] doi: 10.3866/PKU.WHXB201202234
-
[11]
(11) Mugadza, T.; Nyokong, T. Electrochim. Acta 2010, 55, 2606.doi: 10.1016/j.electacta.2009.12.051
-
[12]
(12) Mugadza, T.; Nyokong, T. Synth. Met. 2010, 160, 2089.doi: 10.1016/j.synthmet.2010.07.036
-
[13]
(13) Wei, T.; Fan, Z.; Luo, G.;Wei, F. Mater. Lett. 2008, 62, 64.
-
[14]
(14) Chen, Y.; Zhang, Y. Q.; Zhang, T. H. Carbon 2006, 44, 37.doi: 10.1016/j.carbon.2005.07.011
-
[15]
(15) Mills, A.; Hunte, S. L. J. Photochem. Photobiol. A: Chem. 1997,108, l.
-
[16]
(16) Qiu,W.; Ren, C. J.; ng, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1487. [仇伟, 任成军, 龚茂初,侯云泽, 陈耀强. 物理化学学报, 2011, 27, 1487.] doi: 10.3866/PKU.WHXB20110621
-
[17]
(17) Wang, H.;Wang, H. L.; Jiang,W. F.; Li, Z. Q. Water Res. 2009,43, 204. doi: 10.1016/j.watres.2008.10.003
-
[18]
(18) Wang,W.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B: Environ. 2005, 56, 305. doi: 10.1016/j.apcatb.2004.09.018
-
[19]
(19) Suzuki, Y.; Yoshikawa, S. J. Mater. Res. 2004, 19, 982.doi: 10.1557/JMR.2004.0128
-
[20]
(20) Yang, H. P.; Shi, Z. M.; Dai, K. J.; Duan, Y. P.;Wu, J. M. Acta Chim. Sin. 2011, 69, 536. [杨汉培, 石泽敏, 戴开静, 段云平,吴俊明. 化学学报, 2011, 69, 536.]
-
[21]
(21) Sun, J. H.; Qiao, L. P.; Sun, S. P.;Wang, G. L. J. Hazard Mater.2008, 155, 312. doi: 10.1016/j.jhazmat.2007.11.062
-
[22]
(22) Maiyalagan, T.; Viswanathan, B. Mater. Chem. Phys. 2005, 93,291. doi: 10.1016/j.matchemphys.2005.03.039
-
[23]
(23) Kim, S. D.; Kim, J.W.; Im, J. S. J. Fluorine Chem. 2007, 128,60. doi: 10.1016/j.jfluchem.2006.10.010
-
[24]
(24) Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L. Appl. Surf. Sci.2008, 255, 2485. doi: 10.1016/j.apsusc.2008.07.144
-
[25]
(25) Yang, Y. S.; Qi, G. R.; Qian, J.W.; Yang, S. L. J. Appl. Polym. Sci. 1998, 68, 665.
-
[26]
(26) Hannus, I.; Kollár, T.; Kónya, Z.; Kiricsi, I. Vib. Spectrosc.2000, 22, 29. doi: 10.1016/S0924-2031(99)00059-4
-
[27]
(27) Ba, C. Y.; Economy, J. J. Memb. Sci. 2010, 363, 140.doi: 10.1016/j.memsci.2010.07.019
-
[28]
(28) Peter, J.; Khalyavina, A.; Kǐí?, J.; Bleha, M. Eur. Polym. J.2009, 45, 1716. doi: 10.1016/j.eurpolymj.2009.03.003
-
[29]
(29) Svatos, A.; Attygalle, A. B. Anal. Chem. 1997, 69, 1827.doi: 10.1021/ac960890u
-
[30]
(30) Xu, M.; Huang, Q.; Chen, Q.; Guo, P.; Sun, Z. Chem. Phys. Lett.2003, 375, 598. doi: 10.1016/S0009-2614(03)00923-0
-
[31]
(31) Okabayashi, H.; Etori, H.; Yamada, Y.; Taga, K.; Yoshida, T.Vib. Spectrosc. 1996, 13, 51. doi: 10.1016/0924-2031(96)00034-3
-
[32]
(32) Venkataraman, N. V.; Barman, S.; Vasudevan, S.; Seshadri, R.Chem. Phys. Lett. 2002, 358, 139. doi: 10.1016/S0009-2614(02)00604-8
-
[33]
(33) Georgiev, A.; Karamancheva, I.; Dimov, D. J. Mol. Struct. 2008,888, 214. doi: 10.1016/j.molstruc.2007.12.006
-
[34]
(34) Zhao, X. A.; Ong, C.W.; Tsang, Y. C. Appl. Phys. Lett. 1995,66, 2652. doi: 10.1063/1.113114
-
[35]
(35) Choi, S.; Park, K. H.; Lee, S.; Koh, K. H. J. Appl. Phys. 2002,92, 4007. doi: 10.1063/1.1499233
-
[36]
(36) Hou, P. X.; Liu, C.; Cheng, H. M. Carbon 2008, 46, 2003.doi: 10.1016/j.carbon.2008.09.009
-
[37]
(37) Fernando, K. A. S.; Lin, Y.; Sun, Y. P. Langmuir 2004, 20, 4777.doi: 10.1021/la036217z
-
[38]
(38) Wang,W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Molec. Catal. A2005, 235, 194. doi: 10.1016/j.molcata.2005.02.027
-
[39]
(39) Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures;Academic Press: New York, 1967; pp 132-136.
-
[40]
(40) Lee, S.W.; Sigmund,W. M. Chem. Commun. 2003, 6, 780.
-
[41]
(41) Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.;Ding, L.; Ge,W. K.;Wong, P. K. Appl. Catal. A: Gen. 2005,289, 186. doi: 10.1016/j.apcata.2005.04.057
-
[42]
(42) Yu, H.; Quan, X.; Chen, S.; Zhao, H. J. Phys. Chem. C 2007,111, 12987. doi: 10.1021/jp0728454
-
[43]
(43) Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S.Carbon 2009, 47, 3280. doi: 10.1016/j.carbon.2009.07.046
-
[44]
(44) Tian, L. H.; Ye, L. Q.; Deng, K. J.; Zan, J. Solid State Chem.2011, 184, 1465. doi: 10.1016/j.jssc.2011.04.014
-
[45]
(45) Chen, L. C.; Ho, Y. C.; Guo,W. S.; Huang, C. M.; Pan, T. C.Electrochimica Acta 2009, 54, 3884. doi: 10.1016/j.electacta.2009.02.001
-
[46]
(46) Nahar, M. S.; Zhang, J.; Hasegawa, K. Mater. Sci. Semicond. Process 2009, 12, 168. doi: 10.1016/j.mssp.2009.09.011
-
[47]
(47) Yang, J.; Bai, H.; Tan, X.; Lian, J. Appl. Sur. Sci. 2006, 253,1988. doi: 10.1016/j.apsusc.2006.03.078
-
[48]
(48) Song, Z.; Hrbek, J.; Os od, R. Nano Lett. 2005, 5, 1327.doi: 10.1021/nl0505703
-
[49]
(49) Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin,F.; Bonnamy S. Carbon 2004, 42, 1147.
-
[50]
(50) Shanmugharaj, A. M.; Bae, J. H.; Lee, K. Y.; Noh,W. H.Compos. Sci. Technol. 2007, 67, 1813. doi: 10.1016/j.compscitech.2006.10.021
-
[51]
(51) Kim, S. D.; Kim, J.W.; Im, J. S.; Kim, Y. H.; Lee, Y. S.J. Fluorine Chem. 2007, 128, 60. doi: 10.1016/j.jfluchem.2006.10.010
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[4]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[5]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[6]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[7]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[8]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[9]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[12]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[18]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[19]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[20]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[1]
Metrics
- PDF Downloads(1035)
- Abstract views(1189)
- HTML views(22)