Citation: WU Hong-Bin, ZHANG Ying, YUAN Cong-Li, WEI Xiao-Pei, YIN Jin-Ling, WANG Gui-Ling, CAO Dian-Xue, ZHANG Yi-Ming, YANG Bao-Feng, SHE Pei-liang. Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1247-1252. doi: 10.3866/PKU.WHXB201303211
-
The composite of ordered mesoporous carbon (CMK-3) and Li4Ti5O12 (Li4Ti5O12/CMK-3) was prepared by the wet impregnation of CMK-3 with LiNO3 and Ti(OC4H9)4 solution followed by calcination. Its morphology and structure were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The content of Li4Ti5O12 in the mesoporous nanocomposite was determined by thermogravimetric analysis. Its electrochemical performance as the negative electrode material of lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that Li4Ti5O12 is formed inside the mesopore channels of CMK-3 and some particles are located on the surface of CMK-3. The composite shows significantly greater high-rate performance than commercial Li4Ti5O12. The specific capacity of Li4Ti5O12 in the composite is higher than Li4Ti5O12 without CMK-3 (117.8 mAh·g-1 at 1C rate), and its stabilized specific capacity reached 160, 143, and 131 mAh·g-1 at 0.5C, 1C, and 5C charge-discharge rates, respectively, with a columbic efficiency of nearly 100%. The capacity loss after 100 cycles at 5C rate was less than 0.62%. This result clearly indicates that CMK-3 improves the high rate performance of Li4Ti5O12, likely by reducing the particle size of Li4Ti5O12 and increasing its electronic conductivity owing to the unique structure and od electronic conduction nature of CMK-3.
-
-
[1]
(1) Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.;Ge, X.W. J. Power Sources 2008, 183, 355. doi: 10.1016/j.jpowsour.2008.04.091
-
[2]
(2) Koga, C.;Wada, S.; Nakayama, M. Electrochim. Acta 2010, 55,2561. doi: 10.1016/j.electacta.2009.12.034
-
[3]
(3) Dedryvère, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.; nbeau, D. J. Phys. Chem. C 2010, 14, 10999.
-
[4]
(4) Capsoni, D.; Bini, M.; Massarotti, V.; Mustarelli, P.; Ferrari, S.;Chiodelli, G.; Mozzati, M. C.; Galinetto, P. J. Phys. Chem. C2009, 113, 19664. doi: 10.1021/jp906894v
-
[5]
(5) Lee, S. C.; Lee, S. M.; Lee, J.W.; Lee, J. B.; Lee, S. M.; Han, S.S.; Lee, H. C.; Kim, H. J. J. Phys. Chem. C 2009, 113, 18420.doi: 10.1021/jp905114c
-
[6]
(6) Yoshikawa, D.; Kadoma, Y.; Kim, J. M.; Ui, K.; Kumagai, N.;Kitamura, N.; Idemoto Y. Electrochim. Acta 2010, 55, 1872.doi: 10.1016/j.electacta.2009.10.082
-
[7]
(7) Rahman, M. M.;Wang, J. Z.; Hassan, M. F.; Chou, S.;Wexler,D.; Liu, H. K. J. Power Sources 2010, 195, 4297. doi: 10.1016/j.jpowsour.2010.01.073
-
[8]
(8) Stournara, M. E.; Shenoy, V. B. J. Power Sources 2011, 196,5697. doi: 10.1016/j.jpowsour.2011.02.024
-
[9]
(9) Ju, S. H.; Kang, Y. C. J. Power Sources 2009, 189, 185.doi: 10.1016/j.jpowsour.2008.09.107
-
[10]
(10) Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.;Tarascon, J. M.; Shukla, A. K. Chem. Mater. 2010, 22, 2857.doi: 10.1021/cm100071z
-
[11]
(11) Huang, S.;Wen, Z.; Zhu, X.; Lin, Z. J. Power Sources 2007,165, 408. doi: 10.1016/j.jpowsour.2006.12.010
-
[12]
(12) Deng, J.; Lu, Z.; Belharouak, I.; Amine, K.; Chung, C. Y.J. Power Sources 2009, 193, 816. doi: 10.1016/j.jpowsour.2009.03.074
-
[13]
(13) He, Y. B.; Ning, F.; Li, B.; Song, Q. S.; Lv,W.; Du, H.; Zhai, D.;Su, F.; Yang, Q. H.; Kang, F. J. Power Sources 2012, 202, 253.doi: 10.1016/j.jpowsour.2011.11.037
-
[14]
(14) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources2010, 195, 4997. doi: 10.1016/j.jpowsour.2010.02.020
-
[15]
(15) Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.;Wu,Y. P.; Takamura,T. J. Power Sources 2007, 174, 1109. doi: 10.1016/j.jpowsour.2007.06.107
-
[16]
(16) Lin, Z.; Hu, X.; Huai, Y.; Liu, L.; Deng, Z.; Suo, J. Solid State Ionics 2010, 181, 412. doi: 10.1016/j.ssi.2010.01.019
-
[17]
(17) Yuan, T.; Cai, R.; Ran, R.; Zhou, Y.; Shao, Z. J. Alloy. Compd.2010, 505, 367. doi: 10.1016/j.jallcom.2010.04.253
-
[18]
(18) Jhan, Y. R.; Lin, C. Y.; Duh, J. G. Mater. Lett. 2011, 65, 2502.doi: 10.1016/j.matlet.2011.04.060
-
[19]
(19) Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B.J. Phys. Chem. Solids 2010, 71, 1236. doi: 10.1016/j.jpcs.2010.05.001
-
[20]
(20) Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C.W.; Chou, T.C.; Hwang, B. J. J. Power Sources 2005, 146, 204. doi: 10.1016/j.jpowsour.2005.03.016
-
[21]
(21) Jung, H. G.; Kim, J.; Scrosati, B.; Sun, Y. K. J. Power Sources2011, 196, 7763. doi: 10.1016/j.jpowsour.2011.04.019
-
[22]
(22) Su, L.W.; Jing, Y.; Zhou, Z. Nanoscale 2011, 3, 3967.doi: 10.1039/c1nr10550g
-
[23]
(23) Wang, G.; Liu, H.; Liu, J.; Qiao, S.; Lu, G. M.; Munroe, P.; Ahn,H. Adv. Mater. 2010, 22, 4944. doi: 10.1002/adma.v22.44
-
[24]
(24) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater 2009, 8, 500.doi: 10.1038/nmat2460
-
[25]
(25) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.;Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.doi: 10.1021/ja002261e
-
[26]
(26) Tian, B.; Xiang, H.; Zhang, L.; Li, Z.;Wang, H. Electrochim. Acta 2010, 55, 5453. doi: 10.1016/j.electacta.2010.04.068
-
[27]
(27) Zhang, B.; Huang, Z. D.; Oh, S.W.; Kim, J. K. J. Power Sources2011, 196, 10692. doi: 10.1016/j.jpowsour.2011.08.114
-
[28]
(28) Zhou, X. L.; Huang, R. A.;Wu, Z. C.; Yang, B.; Dai, Y. N. Acta Phys. -Chim. Sin. 2010, 26 (12), 3187. [周晓玲, 黄瑞安, 吴肇聪, 杨斌, 戴永年. 物理化学学报, 2010, 26 (12), 3187.]doi: 10.3866/PKU.WHXB20101212
-
[29]
(29) He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Lv,W.; Yang, C.; Li, J.;Du, H. D.; Zhang, B.; Yang, Q. H.; Kim, J. K.; Kang, F. Y.Scientific Reports 2012, 2, 913.
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[4]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[5]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[6]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[7]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[8]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[9]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[13]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[14]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[15]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[16]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[17]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[20]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[1]
Metrics
- PDF Downloads(902)
- Abstract views(1148)
- HTML views(20)