Citation: CHEN Mei-Ling, WANG Li-Xiang, CHEN Shan-Shan, LIU Xiao-Ya. Surface Hydrophilicity of Spherical Micelle from Self-Assembly of Random Copolymer: A Dissipative Particle Dynamics Simulation[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1201-1208. doi: 10.3866/PKU.WHXB201303202
-
Coarse-grained models with different ratios of numbers of hydrophilic particles to hydrophobic particles were built for amphiphilic random copolymers. The surface hydrophilicity of spherical micelles formed from self-assembly of amphiphilic random copolymers in solution was investigated via dissipative particle dynamics (DPD) simulations. The simulations showed that solid spherical micelles are formed from self-assembly of amphiphilic random copolymers in selective solvents. The surface hydrophilicity of spherical micelles is related to the content of hydrophilic particles and selectivity of the solvent. The surface hydrophilicity of spherical micelles increases with increasing content of hydrophilic particles. In addition, the surface hydrophilicity of spherical micelles increases with the increase of the repulsion parameters between hydrophobic particles and solvent, which is in od agreement with the experimental results. These findings can provide theoretical guidance for molecular design and experimental studies on selfassembly of amphiphilic random copolymers in solution.
-
-
[1]
(1) Zhang, L. F.; Eisenberg, A. Science 1995, 268 (5218), 1728.doi: 10.1126/science.268.5218.1728
-
[2]
(2) Yu, K.; Eisenberg, A. Macromolecules 1996, 29 (19), 6359.doi: 10.1021/ma960381u
-
[3]
(3) Han, Y. Y.; Yu, H. Z.; Du, H. B.; Jiang,W. J. Am. Chem. Soc.2010, 132 (3), 1144. doi: 10.1021/ja909379y
-
[4]
(4) Yuan, S. L.;Wu, R.; Cai, Z. T. Acta Phys. -Chim. Sin. 2004, 20,811. [苑世领, 吴锐, 蔡政亭. 物理化学学报, 2004, 20,811.] doi: 10.3866/PKU.WHXB20040806
-
[5]
(5) Li, X. J.; Liu, Y.;Wang, L.; Deng, M. G.; Liang, H. J. Phys.Chem. Chem. Phys. 2009, 11 (20), 4051. doi: 10.1039/b817773b
-
[6]
(6) He, P. T.; Li, X. J.; Kou, D. Z.; Deng, M. G.; Liang, H. J.J. Chem. Phys. 2010, 132 (20), 204905-1. doi: 10.1063/1.3431203
-
[7]
(7) Wang, H.; Liu, Y. T.; Qian, H. J.; Lu, Z. Y. Polymer 2011, 52 (9), 2094. doi: 10.1016/j.polymer.2011.02.045
-
[8]
(8) Zhong, C. L.; Liu, D. H. Macromol. Theory Simul. 2007, 16 (2),141.
-
[9]
(9) Xin, J.; Liu, D. H.; Zhong, C. L. J. Phys. Chem. B 2007, 111 (49), 13675. doi: 10.1021/jp073173k
-
[10]
(10) Liu, D. H.; Zhong, C. L. Polymer 2008, 49 (5), 1407.doi: 10.1016/j.polymer.2008.01.034
-
[11]
(11) Xia, J.; Zhong, C. L. Macromol. Rapid Commun. 2006, 27 (14),1110.
-
[12]
(12) Xia, J.; Liu, D. H.; Zhong, C. L. Phys. Chem. Chem. Phys.2007, 9 (38), 5267. doi: 10.1039/b705359b
-
[13]
(13) Xu, J. B.;Wu, H.; Lu, D. Y.; He, J. F.;Wen, H. ActaPhys. -Chim. Sin. 2006, 22, 16. [徐俊波, 吴昊, 陆冬云,何险峰, 温浩. 物理化学学报, 2006, 22, 16.] doi: 10.3866/PKU.WHXB20060104
-
[14]
(14) Li, Y. Y.; Guo, S. L.;Wang, K. X.; Xu, X. J. Progress in Chemistry2000, 12 (4), 361. [李有勇, 郭森立, 王凯旋, 徐筱杰. 化学进展, 2000, 12 (4), 361.]
-
[15]
(15) Gavrilov, A. A.; Kudryavtsev, Y. V.; Khalatur, P. G.; Chertovich,A. V. Chem. Phys. Lett. 2011, 503 (4-6), 277. doi: 10.1016/j.cplett.2011.01.024
-
[16]
(16) Liu, X. Y.; Jiang, M.; Yang, S. L.; Chen, M. Q.; Chen, D. Y.;Yang, C.;Wu, K. Angew. Chem. Int. Edit. 2002, 41 (16), 2950.doi: 10.1002/1521-3773(20020816)41:16<2950::AIDANIE2950>3.0.CO;2-K
-
[17]
(17) Liu, X. Y.; Kim, J. S.;Wu, J.; Eisenberg, A. Macromolecules2005, 38 (16), 6749. doi: 10.1021/ma050665r
-
[18]
(18) Liu, X. Y.; Yi, C. L.; Zhu, Y.; Yang, Y. Q.; Jiang, J. Q.; Cui, Z.G.; Jiang, M. J. Colloid Interface Sci. 2010, 351 (2), 315.doi: 10.1016/j.jcis.2010.04.056
-
[19]
(19) Yi, C. L.; Yang, Y. Q.; Zhu, Y.; Liu, N.; Liu, X. Y.; Luo, J.;Jiang, M. Langmuir 2012, 28 (25), 9211. doi: 10.1021/la301605a
-
[20]
(20) Chen, M. L.; Chen, S. S.; Yi, C. L.;Wang, L. X.; Gen, Z. X.;Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 335. [陈美玲, 陈姗姗, 易成林, 汪理想, 耿志鑫, 刘晓亚. 物理化学学报, 2013, 29,335.] doi: 10.3866/PKU.WHXB201211145
-
[21]
(21) Li, Y. B.; Deng, Y. H.; Tong, X. L.;Wang, X. G.Macromolecules 2006, 39 (3), 1108. doi: 10.1021/ma052272y
-
[22]
(22) Deng, Y. H.; Li, Y. B.;Wang, X. G. Macromolecules 2006, 39 (19), 6590. doi: 10.1021/ma061335p
-
[23]
(23) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992,19 (3), 155. doi: 10.1209/0295-5075/19/3/001
-
[24]
(24) Groot, R. D.;Warren, P. B. J. Chem. Phys. 1997, 107 (11), 4423.doi: 10.1063/1.474784
-
[25]
(25) Español, P.;Warren, P. Europhys. Lett. 1995, 30 (4), 191.doi: 10.1209/0295-5075/30/4/001
-
[26]
(26) Plimpton, S. J. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039
-
[27]
(27) Alsunaidi, A.; Abu-Sharkh, B. F. J. Chem. Phys. 2003, 119 (18),9894. doi: 10.1063/1.1615513
-
[28]
(28) Zhang, Y.W. The Self-Assembly and Emulsion Properties ofAmphiphilic Copolymers. MS Dissertation, Jiangnan University,Wuxi, 2012. [张永威. 双亲聚合物自组装及其乳化性能[D].无锡: 江南大学, 2012.]
-
[29]
(29) Yu, S. Y.; Eisenberg, A. J. Am. Chem. Soc. 1997, 119 (35), 8383.doi: 10.1021/ja9709740
-
[1]
-
-
[1]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[2]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[3]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[4]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[5]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[6]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[7]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[8]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Haoxiang Zhang , Zhihan Zhao , Yongchen Jin , Zhiqiang Niu , Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084
-
[17]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[18]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[19]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[20]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[1]
Metrics
- PDF Downloads(1421)
- Abstract views(958)
- HTML views(19)