Citation:
ZHENG Dong, ZHANG Yun-Peng, ZHONG Bei-Jing. Chemical Kinetic Model for Polycyclic Aromatic Hydrocarbon Formation during Gasoline Surrogate Fuel Combustion[J]. Acta Physico-Chimica Sinica,
;2013, 29(06): 1154-1160.
doi:
10.3866/PKU.WHXB201303201
-
A chemical kinetic model consisting of 103 species and 395 elementary reactions has been developed. This kinetic model well describes the formation of polycyclic aromatic hydrocarbons (PAHs) for multi-component gasoline surrogate fuels. Model validation results showed that the predicted PAHs and aromatic precursors using this chemical mechanism were consistent with the experimental results in the premixed flame of ethylene, toluene, n-heptane, and the opposed flow flame of n-heptane. The mechanism is not yet applicable to multidimensional computational fluid dynamics simulations for PAH formation of gasoline combustion. However, compared with the existing kinetic model, the present kinetic model contains fewer species and reactions, so it is closer to the aim of a model for practical applications.
-
-
-
[1]
(1) Iino, F.; Imagawa, T.; Takeuchi, M.; Sadakata, M.;Weber, R.Chemosphere 1999, 39 (15), 2749. doi: 10.1016/S0045-6535(99)00209-X
-
[2]
(2) Richter, H.; Howard, J. B. Prog. Energ. Combust. 2000, 26 (4-6), 565.
-
[3]
(3) Luo, L. S.; Gao, J. H.; Zhang, Z. R. Automative Engineering2009, No. 10, 947. [骆路胜, 高俊华, 张仲荣. 汽车工程,2009, No. 10, 947.]
-
[4]
(4) Frenklach, M.;Wang, H. Symposium (International) onCombustion 1991, 23 (1), 1559. doi: 10.1016/S0082-0784(06)80426-1
-
[5]
(5) Frenklach, M.;Wang, H. Springer Series in Chemical Physics1994, No. 59, 165.
-
[6]
(6) Kazakov, A.;Wang, H.; Frenklach, M. Combust. Flame 1995,100 (1-2), 111.
-
[7]
(7) Wang, H.; Frenklach, M. Combust. Flame 1997, 110 (1-2), 173.
-
[8]
(8) Zhong, B. J.; Hou, L. Y. Journal of Engineering Thermophysics2006, No. 6, 1048. [钟北京, 侯凌云. 工程热物理学报, 2006,No. 6, 1048.]
-
[9]
(9) Appel, J.; Bockhorn, H.; Frenklach, M. Combust. Flame 2000,121 (1-2), 122.
-
[10]
(10) Marinov, N. M.; Pitz,W. J.;Westbrook, C. K.; Castaldi, M. J.;Senkan, S. M. Combust. Sci. Technol. 1996, 116-117 (1-6),211.
-
[11]
(11) Marinov, N. M.; Pitz,W. J.;Westbrook, C. K.; Vincitore, A. M.;Castaldi, M. J.; Senkan, S. M.; Melius, C. F. Combust. Flame1998, 114 (1-2), 192.
-
[12]
(12) D'Anna, A.; D'Alessio, A.; Kent, J. Combust. Flame 2001, 125 (3), 1196. doi: 10.1016/S0010-2180(01)00238-3
-
[13]
(13) D'Anna, A.; Kent, J. H. Combust. Flame 2003, 132 (4), 715.doi: 10.1016/S0010-2180(02)00522-9
-
[14]
(14) Slavinskaya, N. A.; Frank, P. Combust. Flame 2009, 156 (9),1705. doi: 10.1016/j.combustflame.2009.04.013
-
[15]
(15) Slavinskaya, N. A.; Riedel, U.; Dworkin, S. B.; Thomson, M. J.Combust. Flame 2012, 159 (3), 979. doi: 10.1016/j.combustflame.2011.10.005
-
[16]
(16) Marchal, C.; Delfau, J. L.; Vovelle, C.; Moréac, G.;Mounaim-Rousselle, C.; Mauss, F. Proc. Combust. Inst. 2009,32 (1), 753. doi: 10.1016/j.proci.2008.06.115
-
[17]
(17) Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. Combust.Flame 2012, 159 (2), 500. doi: 10.1016/j.combustflame.2011.08.011
-
[18]
(18) Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28 (9),2029. [郑东, 钟北京. 物理化学学报, 2012, 28 (9), 2029.]doi: 10.3866/PKU.WHXB201207042
-
[19]
(19) Zhong, B. J.; Zheng, D. Combust. Sci. Technol. 2012, 185 (4),627. doi: 10.1080/00102202.2012.739223
-
[20]
(20) Miller, J. A. Symposium (International) on Combustion 1996, 26 (1), 461. doi: 10.1016/S0082-0784(96)80249-9
-
[21]
(21) Lindstedt, R. P.; Rizos, K. A. Proc. Combust. Inst. 2002, 29 (2),2291. doi: 10.1016/S1540-7489(02)80279-6
-
[22]
(22) Murakami, Y.; Saejung, T.; Ohashi, C.; Fujii, N. Chem. Letts2003, 32 (12), 1112. doi: 10.1246/cl.2003.1112
-
[23]
(23) Kislov, V. V.; Mebel, A. M. J. Phys. Chem. A 2007, 111 (38),9532. doi: 10.1021/jp0732099
-
[24]
(24) Kee, R. J.; Rupley, F. M.; Miller, J. A. CHEMKIN Release 4.1;Reaction Design: San Die , CA, 2006.
-
[25]
(25) Castaldi, M. J.; Marinov, N. M.; Melius, C. F.; Huang, J.;Senkan, S. M.; Pit,W. J.;Westbrook, C. K. Symposium(International) on Combustion 1996, 26 (1), 693. doi: 10.1016/S0082-0784(96)80277-3
-
[26]
(26) Yang, B.; Li, Y.;Wei, L.; Huang, C.;Wang, J.; Tian, Z.; Yang,R.; Sheng, L.; Zhang, Y.; Qi, F. Proc. Combust. Inst. 2007, 31 (1), 555. doi: 10.1016/j.proci.2006.07.171
-
[27]
(27) Berta, P.; Aggarwal, S. K.; Puri, I. K. Combust. Flame 2006,145 (4), 740. doi: 10.1016/j.combustflame.2006.02.003
-
[28]
(28) Inal, F.; Senkan, S. M. Combust. Flame 2002, 131 (1-2), 16.
-
[1]
-
-
-
[1]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[5]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[6]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[7]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[8]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[9]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[10]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[15]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[16]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[17]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[18]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[19]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[20]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[1]
Metrics
- PDF Downloads(716)
- Abstract views(947)
- HTML views(35)