Citation: ZHANG Peng, ZHAO Lu Song, YAO Jiang Hong, CAO Ya An. Structure, Characterization and Photocatalytic Properties of TiO2 Doped with Different Content of Sn4+ Ions[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1305-1312. doi: 10.3866/PKU.WHXB201303182
-
Pure TiO2 and Sn4+ doped TiO2 (TiO2-Snx%) photocatalysts were prepared by a sol-gel method, where x% represents the nominal molar fraction of Sn4+ ions in the Zr4+ structure. The crystal structure and energy band structure of the resultant catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS).The results show that for a low content of Sn4+ ions, the Sn4+ ions are doped into the TiO2 lattice and replace lattice Ti4+ ions in a substitute mode (Ti1-xSnxO2). The energy levels of these Sn4+ ions are located 0.38 eV below the conduction band. Moreover, the rutile SnO2 crystal structure evolves with increasing content of Sn4+ ions, i.e., a TiO2/SnO2 structure is formed. The conduction band of SnO2 is located 0.33 eV lower than that of TiO2. The separation and recombination mechanism of the photo-generated carriers was characterized by photoluminescence and transient photovoltage techniques. The results showed that the formation of the energy levels of Sn4+ ions and the conduction band of rutile SnO2 can enhance the separation of the photogenerated carriers, and suppress the recombination of photo-generated carriers. However, the energy levels of Sn4+ can lead to a much longer life time and higher separation efficiency of the photo-generated carriers. For different content of Sn4+ in Sn4+ ion doped TiO2(TiO2-Snx%), the abovementioned aspects improve the photocatalytic activity.
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607
-
[3]
(3) Khan, S.; Al-Shahry, M.; Ingler,W. Science 2002, 297, 2243.doi: 10.1126/science.1075035
-
[4]
(4) Yu, H.; Chen, S.; Quan, X.; Zhao, H.; Zhang, Y. Environ. Sci. Technol. 2008, 42, 3791. doi: 10.1021/es702948e
-
[5]
(5) Asahi, R.; Morikawa, T.; Ohwaki, K.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051
-
[6]
(6) Francioso, L.; Presicce, D.; Siciliano, P.; Ficarella, A. Sensors and Actuators B 2007, 123, 516. doi: 10.1016/j.snb.2006.09.037
-
[7]
(7) Zhao,W.; Ma,W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. Soc. 2004, 126, 4782. doi: 10.1021/ja0396753
-
[8]
(8) Zhang, J.;Wu, Y.; Xing, M.; Leghari, S.; Sajjad, S. Energy Environ. Sci. 2010, 3, 715. doi: 10.1039/b927575d
-
[9]
(9) Ji, P.; Takeuchi, M.; Cuong, T.; Zhang, J.; Matsuoka, M.; Anpo,M. Research on Chemical Intermediates 2010, 36, 327.doi: 10.1007/s11164-010-0142-5
-
[10]
(10) Luo, D. C.; Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.]doi: 10.3866/PKU.WHXB20080632
-
[11]
(11) Li, K. Y.; Guo, J.; Liu, T.; Zhou, B. J.; Li, Y. Acta Phys. -Chim. Sin. 2008, 24, 2096. [李葵英, 郭静, 刘通, 周冰晶,李悦. 物理化学学报, 2008, 24, 2096.] doi: 10.3866/PKU.WHXB20081127
-
[12]
(12) Zhou, X.; Lu, J.; Li, L.;Wang, Z. Journal of Nanomaterials2011, 2011, 432947.
-
[13]
(13) Mahanty, S.; Roy, S.; Sen, S. Journal of Crystal Growth 2004,261, 77. doi: 10.1016/j.jcrysgro.2003.09.023
-
[14]
(14) Gu, Q.; Long, J.; Zhou, Y.; Yuan, R.; Lin, H.;Wang, X. Journal of Catalysis 2012, 289, 88. doi: 10.1016/j.jcat.2012.01.018
-
[15]
(15) Zheng, T.; Tian, Z.; Sun, J. X.; Su, B. T.; Lei, Z. Q. Chemical Research and Application 2012, 24, 1. [郑焘, 田泽, 孙佳星, 苏碧桃, 雷自强. 化学研究与应用, 2012, 24, 1.]
-
[16]
(16) Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y.J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k
-
[17]
(17) Cao, Y.; He, T.; Zhao, L.;Wang, E.; Yang,W.; Cao, Y. J. Phys. Chem. C 2009, 113, 18121. doi: 10.1021/jp9069288
-
[18]
(18) Cao, Y.; Yang, Y.; Zhang,W.; Liu, G.; Yue, P. New J. Chem.2004, 28, 218. doi: 10.1039/b306845e
-
[19]
(19) Wang, Y.; Ma, C.; Sun, X.; Li, H. Nanotechnology 2002, 13,565. doi: 10.1088/0957-4484/13/5/304
-
[20]
(20) Li, J.; Zeng, H. J. Am. Chem. Soc. 2007, 129, 15839.doi: 10.1021/ja073521w
-
[21]
(21) Xu, H.; Zhang, L. J. Phys. Chem. C 2010, 114, 11534.doi: 10.1021/jp1027965
-
[22]
(22) Bullock, E.; Patthey, L.; Steinemann, S. Surface Science 1996,352, 504. doi: 10.1016/0039-6028(95)01188-9
-
[23]
(23) Li, D.; Haneda, H.; Hishita, D.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[24]
(24) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem.1995, 99, 16646. doi: 10.1021/j100045a026
-
[25]
(25) Yuan, J.;Wu, Q.; Zhang, P.; Yao, J.; He, T.; Cao, Y. Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
-
[1]
-
-
[1]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[4]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[5]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[6]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[7]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[8]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[9]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[13]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[14]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[15]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[18]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[19]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[20]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[1]
Metrics
- PDF Downloads(688)
- Abstract views(763)
- HTML views(15)