Citation: HUANG Yan, HUANG Xiao, XU Xuan. Effects of Electric Field on the Structures of Metal String Complexes M3(dpa)4Cl2 (M=Co, Rh, Ir; dpa=dipyridylamide)[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201303181 shu

Effects of Electric Field on the Structures of Metal String Complexes M3(dpa)4Cl2 (M=Co, Rh, Ir; dpa=dipyridylamide)

  • Received Date: 16 November 2012
    Available Online: 18 March 2013

    Fund Project: 广东省自然科学基金项目(S2012010008763) (S2012010008763)广东省教育部产学研结合项目(2010B090400184) (2010B090400184)广东省人才引进专项资金(C10133) (C10133)广州市科技攻关项目(2011J4300063)资助 (2011J4300063)

  • As potential molecular wire species, the geometrical and electronic structures of metal string complexes M3(dpa)4Cl2 (1: M=Co, 2: M=Rh, 3: M=Ir; dpa=dipyridylamide) were investigated theoretically using density functional theory with the PBE0 functional by considering the interaction of an external electric field along the M36+ linear metal chain. The results show that the ground states of the complexes are all doublets. There is a 3-center-3-electron σ bond delocalized over the M36+ chain for 1 and 2, while there is a 3-center-4-electron σ bond and a weak δ bond among the Ir36+ chain in 3. Moving down the column of Co, Rh, and Ir elements in the periodic table, the complexes with the corresponding metals showed some regular trends, such as stronger M-M bonds, smaller LUMO-HOMO gaps, weaker anti-ferromagnetic spin coupling among the M36+ chains, and stronger spin delocalization from M36+ to ligands. In the external electric field along the Cl4→Cl5 direction, the M3 ― Cl5 bonds at the low potential side tend to be shortened, while the M2―Cl4 distances at the high potential side increase. With the increase of electric field, the average M―M distances slightly decrease, which is beneficial for electron transport. When the electric field increases, the molecular energy decreases and the dipole moment linearly increases. Moreover, the negative charge moves from Cl5 at the low potential end towards Cl4 at the high potential end, and the spin electron moves from M3 at the low potential end to M1 and M2 at the high potential end, while the positive charges transfer in the opposite direction along the M36+ chain of 3. However, there is no charge transfer between dpa- ligands and M36+ chain or Cl- ligands. The LUMO-HOMO gaps decrease with increasing electric field, which is beneficial for electron transfer. The sensitivity of the frontier orbitals to the electric field is different, which leads to the orbital level crossing for LUMO or HOMO. Moving down the column of metal elements in the periodic table, the complexes with the corresponding metals showed weaker orbital level crossing for LUMO or HOMO and smaller deviation of average M―M distances due to the effect of the electric field.

  • 加载中
    1. [1]

      (1) Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.;Hathaway, B.; Simmons, C.; Thornton, P. J. Chem. Soc. DaltonTrans. 1990, 12, 3835.

    2. [2]

      (2) Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991,4, 993.

    3. [3]

      (3) Cotton, F. A.; Daniels, L. M.; Jordan, G. T.; Murillo, C. A.J. Am. Chem. Soc. 1997, 119, 10377. doi: 10.1021/ja971997h

    4. [4]

      (4) Clérac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.;Wang, X.P. Inorg. Chem. 2001, 40, 1265. doi: 10.1021/ic001069a

    5. [5]

      (5) Berry, J. F.; Cotton, F. A.; Murillo, C. A.; Roberts, B. K. Inorg.Chem. 2004, 43, 2277. doi: 10.1021/ic0354320

    6. [6]

      (6) Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.;Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.;Wang, X. P. J. Am. Chem. Soc. 2000, 122, 6226. doi: 10.1021/ja000515q

    7. [7]

      (7) Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. Chem.Commun. 1994, 2377.

    8. [8]

      (8) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am.Chem. Soc. 1997, 119, 10223. doi: 10.1021/ja971998+

    9. [9]

      (9) Cotton, F. A.; Daniels, L. M.; Jordan, G. T. Chem. Commun.1997, 421.

    10. [10]

      (10) Sheu, J. T.; Lin, C. C.; Chao, I.;Wang, C. C.; Peng, S. M. Chem.Commun. 1996, 315.

    11. [11]

      (11) Shieh, S. J.; Chou, C. C.; Lee, G. H.;Wang, C. C.; Peng, S. M.Angew. Chem. Int. Edit. 1997, 36, 56.

    12. [12]

      (12) Wang,W. Z.; Ismayilov, R. H.; Lee, G. H.; Yeh, C. Y.; Peng, S.M. Dalton Trans. 2007, 830.

    13. [13]

      (13) Peng, S. M.;Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.;Mou, C. Y.; Leung, M. K. J. Mag. Mag. Mater. 2000, 209, 80.doi: 10.1016/S0304-8853(99)00650-2

    14. [14]

      (14) Ismayilov, R. H.;Wang,W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S.A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew.Chem. Int. Edit. 2011, 50, 2045. doi: 10.1002/anie.v50.9

    15. [15]

      (15) Rohmer, M. M.; Bénard, M. J. Am. Chem. Soc. 1998, 120, 9372.doi: 10.1021/ja981400d

    16. [16]

      (16) Pantazis, D. A.; McGrady, J. E. J. Am. Chem. Soc. 2006, 128,4128. doi: 10.1021/ja0581402

    17. [17]

      (17) Lin, S. Y.; Chen, I.W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.;Lin, T.W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004,108, 959. doi: 10.1021/jp035415w

    18. [18]

      (18) Chen, I.W. P.; Fu, M. D.; Tseng,W. H.; Yu, J. Y.;Wu, S. H.; Ku,C. J.; Chen, C. H.; Peng, S. M. Angew. Chem. Int. Edit. 2006,118, 5946.

    19. [19]

      (19) Huang, G. C.; Liu, I. P. C.; Kuo, J. H.; Huang, Y. L.; Yeh, C. Y.;Lee, G. H.; Peng, S. M. Dalton Trans. 2009, 2623.

    20. [20]

      (20) Tsai, T.W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Phys. Chem.C 2010, 114, 3641. doi: 10.1021/jp907893q

    21. [21]

      (21) Georgiev, V. P.; McGrady, J. E. Inorg. Chem. 2010, 49, 5591.doi: 10.1021/ic100493t

    22. [22]

      (22) Li, Y.W.; Zhang, Y.; Yin, G. P.; Zhao, J.W. Chem. J. Chin.Univ. 2006, 27, 292. [李延伟, 章岩, 尹鸽平, 赵健伟. 高等学校化学学报, 2006, 27, 292.]

    23. [23]

      (23) Yan, A. Y.; Song, X. S.; Jiang, M. Acta. Chim. Sin. 2009, 67 (16), 1875. [闫安英, 宋晓书, 姜明. 化学学报, 2009, 67 (16), 1875.]

    24. [24]

      (24) Ye, Y. F.; Zhang, M. L.; Liu, H. M.; Zhao, J.W. Journal ofAtomic and Molecular Physics 2008, 25 (1), 6. [叶原丰, 张密林, 刘洪梅, 赵健伟. 原子与分子物理学报, 2008, 25 (1), 6.]

    25. [25]

      (25) Tan, Y.; Huang, X.; Xu, X.; Xu, Z. G. Chem. J. Chin. Univ.2012, 33, 1278. [谭莹, 黄晓, 许旋, 徐志广. 高等学校化学学报, 2012, 33, 1278.]

    26. [26]

      (26) Huang, X.; Tan, Y.; Xu, X.; Xu, Z. G. Acta Chim. Sin. 2012, 70 (18), 1979. [黄晓, 谭莹, 许旋, 徐志广. 化学学报,2012, 70 (18), 1979.] doi: 10.6023/A12030051

    27. [27]

      (27) Glendening, E. D.; Reed, A. E.; Carpenter, J. E. NBO Version3.1.

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision D.02; Gaussian Inc.:Wallingford, CT, 2003.

    29. [29]

      (29) Rohmer, M. M.; Strich, A.; Bénard, M.; Malrieu, J. P. J. Am.Chem. Soc. 2001, 123, 9126. doi: 10.1021/ja0103142

    30. [30]

      (30) Ma, H. X.; Zheng, Y. L.; Zhan, Y. S.; Tan, Y.; Huang, X.; Peng,Q.; Xu, X. Acta Phys. -Chim. Sin. 2012, 28 (7), 1637. [马华璇, 郑燕玲, 詹益仕, 谭莹, 黄晓, 彭琦, 许旋. 物理化学学报, 2012, 28 (7), 1637.] doi: 10.3866/PKU.WHXB201204111


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240007

    4. [4]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, doi: 10.3866/PKU.DXHX202309008

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, doi: 10.3866/PKU.DXHX202310084

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230374

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109188

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230431

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240173

    17. [17]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109345

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(612)
  • Abstract views(740)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return