Citation: HUANG Yan, HUANG Xiao, XU Xuan. Effects of Electric Field on the Structures of Metal String Complexes M3(dpa)4Cl2 (M=Co, Rh, Ir; dpa=dipyridylamide)[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201303181 shu

Effects of Electric Field on the Structures of Metal String Complexes M3(dpa)4Cl2 (M=Co, Rh, Ir; dpa=dipyridylamide)

  • Received Date: 16 November 2012
    Available Online: 18 March 2013

    Fund Project: 广东省自然科学基金项目(S2012010008763) (S2012010008763)广东省教育部产学研结合项目(2010B090400184) (2010B090400184)广东省人才引进专项资金(C10133) (C10133)广州市科技攻关项目(2011J4300063)资助 (2011J4300063)

  • As potential molecular wire species, the geometrical and electronic structures of metal string complexes M3(dpa)4Cl2 (1: M=Co, 2: M=Rh, 3: M=Ir; dpa=dipyridylamide) were investigated theoretically using density functional theory with the PBE0 functional by considering the interaction of an external electric field along the M36+ linear metal chain. The results show that the ground states of the complexes are all doublets. There is a 3-center-3-electron σ bond delocalized over the M36+ chain for 1 and 2, while there is a 3-center-4-electron σ bond and a weak δ bond among the Ir36+ chain in 3. Moving down the column of Co, Rh, and Ir elements in the periodic table, the complexes with the corresponding metals showed some regular trends, such as stronger M-M bonds, smaller LUMO-HOMO gaps, weaker anti-ferromagnetic spin coupling among the M36+ chains, and stronger spin delocalization from M36+ to ligands. In the external electric field along the Cl4→Cl5 direction, the M3 ― Cl5 bonds at the low potential side tend to be shortened, while the M2―Cl4 distances at the high potential side increase. With the increase of electric field, the average M―M distances slightly decrease, which is beneficial for electron transport. When the electric field increases, the molecular energy decreases and the dipole moment linearly increases. Moreover, the negative charge moves from Cl5 at the low potential end towards Cl4 at the high potential end, and the spin electron moves from M3 at the low potential end to M1 and M2 at the high potential end, while the positive charges transfer in the opposite direction along the M36+ chain of 3. However, there is no charge transfer between dpa- ligands and M36+ chain or Cl- ligands. The LUMO-HOMO gaps decrease with increasing electric field, which is beneficial for electron transfer. The sensitivity of the frontier orbitals to the electric field is different, which leads to the orbital level crossing for LUMO or HOMO. Moving down the column of metal elements in the periodic table, the complexes with the corresponding metals showed weaker orbital level crossing for LUMO or HOMO and smaller deviation of average M―M distances due to the effect of the electric field.

  • 加载中
    1. [1]

      (1) Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.;Hathaway, B.; Simmons, C.; Thornton, P. J. Chem. Soc. DaltonTrans. 1990, 12, 3835.

    2. [2]

      (2) Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991,4, 993.

    3. [3]

      (3) Cotton, F. A.; Daniels, L. M.; Jordan, G. T.; Murillo, C. A.J. Am. Chem. Soc. 1997, 119, 10377. doi: 10.1021/ja971997h

    4. [4]

      (4) Clérac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.;Wang, X.P. Inorg. Chem. 2001, 40, 1265. doi: 10.1021/ic001069a

    5. [5]

      (5) Berry, J. F.; Cotton, F. A.; Murillo, C. A.; Roberts, B. K. Inorg.Chem. 2004, 43, 2277. doi: 10.1021/ic0354320

    6. [6]

      (6) Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.;Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.;Wang, X. P. J. Am. Chem. Soc. 2000, 122, 6226. doi: 10.1021/ja000515q

    7. [7]

      (7) Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. Chem.Commun. 1994, 2377.

    8. [8]

      (8) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am.Chem. Soc. 1997, 119, 10223. doi: 10.1021/ja971998+

    9. [9]

      (9) Cotton, F. A.; Daniels, L. M.; Jordan, G. T. Chem. Commun.1997, 421.

    10. [10]

      (10) Sheu, J. T.; Lin, C. C.; Chao, I.;Wang, C. C.; Peng, S. M. Chem.Commun. 1996, 315.

    11. [11]

      (11) Shieh, S. J.; Chou, C. C.; Lee, G. H.;Wang, C. C.; Peng, S. M.Angew. Chem. Int. Edit. 1997, 36, 56.

    12. [12]

      (12) Wang,W. Z.; Ismayilov, R. H.; Lee, G. H.; Yeh, C. Y.; Peng, S.M. Dalton Trans. 2007, 830.

    13. [13]

      (13) Peng, S. M.;Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.;Mou, C. Y.; Leung, M. K. J. Mag. Mag. Mater. 2000, 209, 80.doi: 10.1016/S0304-8853(99)00650-2

    14. [14]

      (14) Ismayilov, R. H.;Wang,W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S.A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew.Chem. Int. Edit. 2011, 50, 2045. doi: 10.1002/anie.v50.9

    15. [15]

      (15) Rohmer, M. M.; Bénard, M. J. Am. Chem. Soc. 1998, 120, 9372.doi: 10.1021/ja981400d

    16. [16]

      (16) Pantazis, D. A.; McGrady, J. E. J. Am. Chem. Soc. 2006, 128,4128. doi: 10.1021/ja0581402

    17. [17]

      (17) Lin, S. Y.; Chen, I.W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.;Lin, T.W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004,108, 959. doi: 10.1021/jp035415w

    18. [18]

      (18) Chen, I.W. P.; Fu, M. D.; Tseng,W. H.; Yu, J. Y.;Wu, S. H.; Ku,C. J.; Chen, C. H.; Peng, S. M. Angew. Chem. Int. Edit. 2006,118, 5946.

    19. [19]

      (19) Huang, G. C.; Liu, I. P. C.; Kuo, J. H.; Huang, Y. L.; Yeh, C. Y.;Lee, G. H.; Peng, S. M. Dalton Trans. 2009, 2623.

    20. [20]

      (20) Tsai, T.W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Phys. Chem.C 2010, 114, 3641. doi: 10.1021/jp907893q

    21. [21]

      (21) Georgiev, V. P.; McGrady, J. E. Inorg. Chem. 2010, 49, 5591.doi: 10.1021/ic100493t

    22. [22]

      (22) Li, Y.W.; Zhang, Y.; Yin, G. P.; Zhao, J.W. Chem. J. Chin.Univ. 2006, 27, 292. [李延伟, 章岩, 尹鸽平, 赵健伟. 高等学校化学学报, 2006, 27, 292.]

    23. [23]

      (23) Yan, A. Y.; Song, X. S.; Jiang, M. Acta. Chim. Sin. 2009, 67 (16), 1875. [闫安英, 宋晓书, 姜明. 化学学报, 2009, 67 (16), 1875.]

    24. [24]

      (24) Ye, Y. F.; Zhang, M. L.; Liu, H. M.; Zhao, J.W. Journal ofAtomic and Molecular Physics 2008, 25 (1), 6. [叶原丰, 张密林, 刘洪梅, 赵健伟. 原子与分子物理学报, 2008, 25 (1), 6.]

    25. [25]

      (25) Tan, Y.; Huang, X.; Xu, X.; Xu, Z. G. Chem. J. Chin. Univ.2012, 33, 1278. [谭莹, 黄晓, 许旋, 徐志广. 高等学校化学学报, 2012, 33, 1278.]

    26. [26]

      (26) Huang, X.; Tan, Y.; Xu, X.; Xu, Z. G. Acta Chim. Sin. 2012, 70 (18), 1979. [黄晓, 谭莹, 许旋, 徐志广. 化学学报,2012, 70 (18), 1979.] doi: 10.6023/A12030051

    27. [27]

      (27) Glendening, E. D.; Reed, A. E.; Carpenter, J. E. NBO Version3.1.

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision D.02; Gaussian Inc.:Wallingford, CT, 2003.

    29. [29]

      (29) Rohmer, M. M.; Strich, A.; Bénard, M.; Malrieu, J. P. J. Am.Chem. Soc. 2001, 123, 9126. doi: 10.1021/ja0103142

    30. [30]

      (30) Ma, H. X.; Zheng, Y. L.; Zhan, Y. S.; Tan, Y.; Huang, X.; Peng,Q.; Xu, X. Acta Phys. -Chim. Sin. 2012, 28 (7), 1637. [马华璇, 郑燕玲, 詹益仕, 谭莹, 黄晓, 彭琦, 许旋. 物理化学学报, 2012, 28 (7), 1637.] doi: 10.3866/PKU.WHXB201204111


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240213

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240192

    12. [12]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, doi: 10.3866/PKU.DXHX202309008

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240007

    14. [14]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, doi: 10.3866/PKU.DXHX202402057

    15. [15]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, doi: 10.3866/PKU.DXHX202310084

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, doi: 10.12461/PKU.DXHX202402058

    18. [18]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, doi: 10.12461/PKU.DXHX202406032

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(612)
  • Abstract views(786)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return