Citation: CHEN Chen, CHU Yan-Qiu, DAI Xin-Hua, FANG Xiang, DING Chuan-Fan. Investigation of the Non-Covalent Interactions between Fragment Peptides of Bradykinin by Mass Spectrometry[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1336-1343. doi: 10.3866/PKU.WHXB201303155 shu

Investigation of the Non-Covalent Interactions between Fragment Peptides of Bradykinin by Mass Spectrometry

  • Received Date: 6 February 2013
    Available Online: 15 March 2013

    Fund Project: 国家科技支撑计划(2009BAK60B03) (2009BAK60B03)国家重大科学仪器设备开发专项(2011YQ090005)资助项目 (2011YQ090005)

  • To explore the important factors affecting the stability of gas phase bradykinin (R1P2P3G4F5S6P7F8R9), the non-covalent interactions between fragment peptides of bradykinin were investigated by electrospray ionization mass spectrometry (ESI-MS). The fracture sites are S6P7 (mode 1) and F5S6 (mode 2). The fragment peptides of bradykinin and its des-arginine analogues were synthesized. ESI-MS results showed that the fragment peptides of bradykinin obtained in the two modes can easily react by non-covalent interactions. In fracture mode 1, when R9 was removed, the peptide PF seldom bound to any other fragment peptide. While in fracture mode 2, non-covalent binding still occurred between fragment peptides when either R1 or R9 was removed, which indicates that serine is likely to be at the position of the β-turn. The collision induced dissociation (CID) revealed that the binding strength between RPPGFS and PFR, or RPPGF and SPFR, is stronger than for the peptides without R. For the complexes of RPPGFS with PFR, and RPPGF with SPFR, the binding constant (Kst) values determined by mass spectrometric titrations were 3.53×103 and 3.16×103, respectively, which are greater than the Kst value (1.25×103) of the complexes of PPGF with SPF. The mass spectrometric titrations confirmed the results from CID, indicating that the hydrogen bonds between the arginine residues of the two terminals of bradykinin play an important role in stabilizing the conformation of gas phase bradykinin.

  • 加载中
    1. [1]

      (1) Aebersold, R.; odlett, D. R. Chem. Rev. 2001, 101, 269. doi: 10.1021/cr990076h

    2. [2]

      (2) Aebersold, R.; Mann, M. Nature 2003, 422, 198. doi: 10.1038/nature01511

    3. [3]

      (3) Matysiak, S.; Debenedetti, P. G.; Rossky, P. J. J. Phys. Chem. B2012, 116, 8095. doi: 10.1021/jp3039175

    4. [4]

      (4) Bolen, D.W.; Rose, G. D. Annu. Rev. Biochem. 2008, 77, 339.doi: 10.1146/annurev.biochem.77.061306.131357

    5. [5]

      (5) Hatahet, F.; Ruddock, L.W. Antioxid. Redox Sign. 2009, 11,2807. doi: 10.1089/ars.2009.2466

    6. [6]

      (6) Rinner, O.; Muller, L. N.; Hubalek, M. Nat. Biotechnol. 2007,25, 345. doi: 10.1038/nbt1289

    7. [7]

      (7) Chu, Y. Q.; Pan, T. T.; Dai, Z. Y.; Yu, Z.W.; Zheng, S. B.; Ding,C. F. Acta Phys. -Chim. Sin. 2008, 24, 1981. [储艳秋, 潘婷婷,戴兆云, 俞卓伟, 郑松柏, 丁传凡. 物理化学学报, 2008, 24,1981.] doi: 10.3866/PKU.WHXB20081108

    8. [8]

      (8) Murray, J. K.; Gellman, S. H. Biopolymers 2007, 88, 657.

    9. [9]

      (9) Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M. T.; Fenn, J. B.Anal. Chem. 1985, 57, 675. doi: 10.1021/ac00280a023

    10. [10]

      (10) Qin, Y. J.;Wei, S. G.;Wang, X. L.; Yang, F.;Wang, B.; Guo, X.H. Chem. J. Chin. Univ. 2011, 32, 2748. [秦玉娇, 魏士刚, 王晓录, 杨帆, 汪兵, 国新华. 高等学校化学学报, 2011, 32,2748.]

    11. [11]

      (11) Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299. doi: 10.1021/ac00171a028

    12. [12]

      (12) Beavis, R. C.; Chait, B. T. Methods Enzymol.1996, 270, 519.doi: 10.1016/S0076-6879(96)70024-1

    13. [13]

      (13) Wang, Q.; Chu, Y. Q.; Zhang, K.; Dai, X. H.; Fang, X.; Ding, C.F. Acta Phys. -Chim. Sin. 2012, 28, 971. [王青, 储艳秋,张开, 戴新华, 方向, 丁传凡. 物理化学学报, 2012, 28,971.] doi: 10.3866/PKU.WHXB201112201

    14. [14]

      (14) Lorenzen, K.; Versluis, C.; van Duijn, E.; van den Heuvel, R.;Heck, A. Int. J. Mass Spectrom. 2007, 268, 198. doi: 10.1016/j.ijms.2007.06.012

    15. [15]

      (15) Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.;Hunt, D. F. P. Natl. Acad. Sci. U. S. A. 2004, 101 (26), 9528.doi: 10.1073/pnas.0402700101

    16. [16]

      (16) Koomen, J. M.; Ruotolo, B. T.; Gillig, K. J.; Russel, D. H.J. Am. Mass Spectrom. 2002, 13, 166. doi: 10.1016/S1044-0305(01)00348-8

    17. [17]

      (17) Ianzer, D.; Konno, K.; Marques-Porto, R.; Portaro, F.; Stocklin,R.; Pimenta, D. C. Peptides 2004, 25, 1085. doi: 10.1016/j.peptides.2004.04.006

    18. [18]

      (18) Marshall, P.; Heudi, O.; Mckeown, S.; Amour, A.; Abou-Shakra,F. Rapid Commun. Mass Spectrom. 2002, 16, 220.

    19. [19]

      (19) Pierson, N. A.; Chen, L.; Valentine, S. J.; Russell, D. H.;Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2011, 133, 13810.

    20. [20]

      (20) Kakoki, M.; McGarrah, R.W.; Kim, H. S.; Smithies, O. P. Natl. Acad. Sci. U. S. A. 2007, 104, 7576. doi: 10.1073/pnas.0701617104

    21. [21]

      (21) Pallante, G. A.; Cassady, C. J. Int. J. Mass Spectrom. 2002, 219,115. doi: 10.1016/S1387-3806(02)00556-0

    22. [22]

      (22) Lopez, J. J; Shukla, A. K.; Reinhart, C. Angew. Chem. Int. Edit.2008, 7, 1668.

    23. [23]

      (23) Wyttenbach, T.; vonHelden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118 (35), 8355. doi: 10.1021/ja9535928

    24. [24]

      (24) Rodriquez, C. F.; Orlova, G.; Guo, Y. Z.; Li, X. M.; Siu, C. K.;Hopkinson, A. C.; Siu, K.W. M. J. Phys. Chem. B 2006, 110 (14), 7528. doi: 10.1021/jp046015r

    25. [25]

      (25) Russell, D. H.; Barbacci, D. C.; Gimon-Kinsel, M. E. J. Mass Spectrom. 1999, 34, 124.

    26. [26]

      (26) Yu, Z.; Cui, M.; Yan, C. Y.; Song, F. R.; Liu, Z. Q.; Liu, S. Y.Rapid Commun. Mass Spectrom. 2007, 21, 683.

    27. [27]

      (27) Schnier, P. D.; Price,W. D.; Jockusch, R. A.;Williams, E. R.J. Am. Chem. Soc. 1996, 118 (30), 7178. doi: 10.1021/ja9609157


  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    5. [5]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Jibin Miao Changjie Mao Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021

    14. [14]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    19. [19]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(612)
  • Abstract views(664)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return