Citation: CHEN Chen, CHU Yan-Qiu, DAI Xin-Hua, FANG Xiang, DING Chuan-Fan. Investigation of the Non-Covalent Interactions between Fragment Peptides of Bradykinin by Mass Spectrometry[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1336-1343. doi: 10.3866/PKU.WHXB201303155 shu

Investigation of the Non-Covalent Interactions between Fragment Peptides of Bradykinin by Mass Spectrometry

  • Received Date: 6 February 2013
    Available Online: 15 March 2013

    Fund Project: 国家科技支撑计划(2009BAK60B03) (2009BAK60B03)国家重大科学仪器设备开发专项(2011YQ090005)资助项目 (2011YQ090005)

  • To explore the important factors affecting the stability of gas phase bradykinin (R1P2P3G4F5S6P7F8R9), the non-covalent interactions between fragment peptides of bradykinin were investigated by electrospray ionization mass spectrometry (ESI-MS). The fracture sites are S6P7 (mode 1) and F5S6 (mode 2). The fragment peptides of bradykinin and its des-arginine analogues were synthesized. ESI-MS results showed that the fragment peptides of bradykinin obtained in the two modes can easily react by non-covalent interactions. In fracture mode 1, when R9 was removed, the peptide PF seldom bound to any other fragment peptide. While in fracture mode 2, non-covalent binding still occurred between fragment peptides when either R1 or R9 was removed, which indicates that serine is likely to be at the position of the β-turn. The collision induced dissociation (CID) revealed that the binding strength between RPPGFS and PFR, or RPPGF and SPFR, is stronger than for the peptides without R. For the complexes of RPPGFS with PFR, and RPPGF with SPFR, the binding constant (Kst) values determined by mass spectrometric titrations were 3.53×103 and 3.16×103, respectively, which are greater than the Kst value (1.25×103) of the complexes of PPGF with SPF. The mass spectrometric titrations confirmed the results from CID, indicating that the hydrogen bonds between the arginine residues of the two terminals of bradykinin play an important role in stabilizing the conformation of gas phase bradykinin.

  • 加载中
    1. [1]

      (1) Aebersold, R.; odlett, D. R. Chem. Rev. 2001, 101, 269. doi: 10.1021/cr990076h

    2. [2]

      (2) Aebersold, R.; Mann, M. Nature 2003, 422, 198. doi: 10.1038/nature01511

    3. [3]

      (3) Matysiak, S.; Debenedetti, P. G.; Rossky, P. J. J. Phys. Chem. B2012, 116, 8095. doi: 10.1021/jp3039175

    4. [4]

      (4) Bolen, D.W.; Rose, G. D. Annu. Rev. Biochem. 2008, 77, 339.doi: 10.1146/annurev.biochem.77.061306.131357

    5. [5]

      (5) Hatahet, F.; Ruddock, L.W. Antioxid. Redox Sign. 2009, 11,2807. doi: 10.1089/ars.2009.2466

    6. [6]

      (6) Rinner, O.; Muller, L. N.; Hubalek, M. Nat. Biotechnol. 2007,25, 345. doi: 10.1038/nbt1289

    7. [7]

      (7) Chu, Y. Q.; Pan, T. T.; Dai, Z. Y.; Yu, Z.W.; Zheng, S. B.; Ding,C. F. Acta Phys. -Chim. Sin. 2008, 24, 1981. [储艳秋, 潘婷婷,戴兆云, 俞卓伟, 郑松柏, 丁传凡. 物理化学学报, 2008, 24,1981.] doi: 10.3866/PKU.WHXB20081108

    8. [8]

      (8) Murray, J. K.; Gellman, S. H. Biopolymers 2007, 88, 657.

    9. [9]

      (9) Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M. T.; Fenn, J. B.Anal. Chem. 1985, 57, 675. doi: 10.1021/ac00280a023

    10. [10]

      (10) Qin, Y. J.;Wei, S. G.;Wang, X. L.; Yang, F.;Wang, B.; Guo, X.H. Chem. J. Chin. Univ. 2011, 32, 2748. [秦玉娇, 魏士刚, 王晓录, 杨帆, 汪兵, 国新华. 高等学校化学学报, 2011, 32,2748.]

    11. [11]

      (11) Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299. doi: 10.1021/ac00171a028

    12. [12]

      (12) Beavis, R. C.; Chait, B. T. Methods Enzymol.1996, 270, 519.doi: 10.1016/S0076-6879(96)70024-1

    13. [13]

      (13) Wang, Q.; Chu, Y. Q.; Zhang, K.; Dai, X. H.; Fang, X.; Ding, C.F. Acta Phys. -Chim. Sin. 2012, 28, 971. [王青, 储艳秋,张开, 戴新华, 方向, 丁传凡. 物理化学学报, 2012, 28,971.] doi: 10.3866/PKU.WHXB201112201

    14. [14]

      (14) Lorenzen, K.; Versluis, C.; van Duijn, E.; van den Heuvel, R.;Heck, A. Int. J. Mass Spectrom. 2007, 268, 198. doi: 10.1016/j.ijms.2007.06.012

    15. [15]

      (15) Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.;Hunt, D. F. P. Natl. Acad. Sci. U. S. A. 2004, 101 (26), 9528.doi: 10.1073/pnas.0402700101

    16. [16]

      (16) Koomen, J. M.; Ruotolo, B. T.; Gillig, K. J.; Russel, D. H.J. Am. Mass Spectrom. 2002, 13, 166. doi: 10.1016/S1044-0305(01)00348-8

    17. [17]

      (17) Ianzer, D.; Konno, K.; Marques-Porto, R.; Portaro, F.; Stocklin,R.; Pimenta, D. C. Peptides 2004, 25, 1085. doi: 10.1016/j.peptides.2004.04.006

    18. [18]

      (18) Marshall, P.; Heudi, O.; Mckeown, S.; Amour, A.; Abou-Shakra,F. Rapid Commun. Mass Spectrom. 2002, 16, 220.

    19. [19]

      (19) Pierson, N. A.; Chen, L.; Valentine, S. J.; Russell, D. H.;Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2011, 133, 13810.

    20. [20]

      (20) Kakoki, M.; McGarrah, R.W.; Kim, H. S.; Smithies, O. P. Natl. Acad. Sci. U. S. A. 2007, 104, 7576. doi: 10.1073/pnas.0701617104

    21. [21]

      (21) Pallante, G. A.; Cassady, C. J. Int. J. Mass Spectrom. 2002, 219,115. doi: 10.1016/S1387-3806(02)00556-0

    22. [22]

      (22) Lopez, J. J; Shukla, A. K.; Reinhart, C. Angew. Chem. Int. Edit.2008, 7, 1668.

    23. [23]

      (23) Wyttenbach, T.; vonHelden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118 (35), 8355. doi: 10.1021/ja9535928

    24. [24]

      (24) Rodriquez, C. F.; Orlova, G.; Guo, Y. Z.; Li, X. M.; Siu, C. K.;Hopkinson, A. C.; Siu, K.W. M. J. Phys. Chem. B 2006, 110 (14), 7528. doi: 10.1021/jp046015r

    25. [25]

      (25) Russell, D. H.; Barbacci, D. C.; Gimon-Kinsel, M. E. J. Mass Spectrom. 1999, 34, 124.

    26. [26]

      (26) Yu, Z.; Cui, M.; Yan, C. Y.; Song, F. R.; Liu, Z. Q.; Liu, S. Y.Rapid Commun. Mass Spectrom. 2007, 21, 683.

    27. [27]

      (27) Schnier, P. D.; Price,W. D.; Jockusch, R. A.;Williams, E. R.J. Am. Chem. Soc. 1996, 118 (30), 7178. doi: 10.1021/ja9609157


  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    6. [6]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    10. [10]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Jibin Miao Changjie Mao Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021

Metrics
  • PDF Downloads(612)
  • Abstract views(718)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return