Citation: WANG Chang-Sheng, LIU Peng, YU Nan. Site-Preference of Uracil and Thymine Hydrogen Bonding to Quercetin[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1173-1182. doi: 10.3866/PKU.WHXB201303153 shu

Site-Preference of Uracil and Thymine Hydrogen Bonding to Quercetin

  • Received Date: 28 December 2012
    Available Online: 15 March 2013

    Fund Project: 国家自然科学基金(20973088, 21173109, 21133005) (20973088, 21173109, 21133005) 教育部高等学校博士学科点专项科研基金(20102136110001) (20102136110001)辽宁省优秀人才基金(LR2012037)资助项目 (LR2012037)

  • Exploring the binding features between small drug molecules and biomolecules is particularly important because it can provide valuable information for understanding the interaction mechanism and therefore rationally designing, modifying and screening of new drugs. In this paper, the site-preference of the nucleic acid bases uracil and thymine hydrogen bonding to the small medical molecule quercetin is investigated using the density functional theory method. Thirty stable hydrogen-bonded complexes were located at the B3LYP/6-31G(d) level of theory. The binding energies for these complexes were further evaluated at the B3LYP/6-311++G(3df,2p) level of theory with the basis set superposition error corrections. The results indicate that quercetin can interact with uracil or thymine through five binding sites, which herein we refer to as Site qu1, Site qu2, Site qu3, Site qu4, and Site qu5, and uracil (or thymine) can interact with quercetin through three binding sites, which herein we refer to as Site u1, Site u2, and Site u3 (or Site t1, Site t2, and Site t3). We found that once the binding site of quercetin is fixed, the hydrogen bonds formed through uracil Site u1 and thymine Site t1 are the strongest, while those formed through uracil Site u2 and thymine Site t2 are the weakest. When the binding site of uracil or thymine is fixed, the hydrogen bonds formed through the quercetin Site qu1 are the strongest, followed by those formed through quercetin Site qu5, while those formed through quercetin Site qu3 are the weakest. Atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also carried out to explore the interaction nature of these hydrogen-bonded complexes.

  • 加载中
    1. [1]

      (1) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042

    2. [2]

      (2) Lespade, L.; Bercion, S. J. Phys. Chem. B 2010, 114, 921. doi: 10.1021/jp9041809

    3. [3]

      (3) Guzzo, M. R.; Uemi, M.; Donate, P. M.; Nikolaou, S.; Machado,A. E. H.; Okano, L. T. J. Phys. Chem. A 2006, 110, 10545. doi: 10.1021/jp0613337

    4. [4]

      (4) Chakraborty, S.; Biswas, P. K. J. Phys. Chem. A 2012, 116,8775. doi: 10.1021/jp303543z

    5. [5]

      (5) Estévez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111,11100. doi: 10.1021/jp074941a

    6. [6]

      (6) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Theor.Chem. Acc. 2004, 111, 210. doi: 10.1007/s00214-003-0544-1

    7. [7]

      (7) Lee, S.; Shin, S. Y.; Lee, Y.; Park, Y.; Kim, B. G.; Ahn, J. H.;Chong, Y.; Lee, Y. H.; Lim, Y. Bioorg. Med. Chem. Lett. 2011,21, 3866. doi: 10.1016/j.bmcl.2011.05.043

    8. [8]

      (8) Kang, J.W.; Zhuo, L.; Lu, X. Q.; Liu, H. D.; Zhang, M.;Wu, H.X. J. Inorg. Biochem. 2004, 98, 79. doi: 10.1016/j.jinorgbio.2003.08.015

    9. [9]

      (9) Bhuva, H. A.; Kini, S. G. J. Mol. Graph. Model. 2010, 29, 32.doi: 10.1016/j.jmgm.2010.04.003

    10. [10]

      (10) Zhang, M.; Lv, Q. L.; Yue, N. N.;Wang, H. Y. Spectrochim.Acta A 2009, 72, 572. doi: 10.1016/j.saa.2008.10.045

    11. [11]

      (11) Cornard, J. P.; Merlin, J. C. J. Mol. Struct. 2003, 651-653, 381.

    12. [12]

      (12) Mukai, K.; Oka,W.;Watanabe, K.; Egawa, Y.; Nagaoka, S. I.J. Phys. Chem. A 1997, 101, 3746. doi: 10.1021/jp9706745

    13. [13]

      (13) Ni, Y. N.; Du, S.; Kokot, S. Anal. Chim. Acta 2007, 584, 19.doi: 10.1016/j.aca.2006.11.006

    14. [14]

      (14) Ren, J.; Meng, S.; Lekka, C. E.; Kaxiras, E. J. Phys. Chem. B2008, 112, 1845. doi: 10.1021/jp076881e

    15. [15]

      (15) Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. J. Agric.Food Chem. 2006, 54, 6343. doi: 10.1021/jf060986h

    16. [16]

      (16) Lekka, C. E.; Ren, J.; Meng, S.; Kaxiras, E. J. Phys. Chem. B2009, 113, 6478. doi: 10.1021/jp807948z

    17. [17]

      (17) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. J. Phys.Chem. A 2004, 108, 4916. doi: 10.1021/jp037247d

    18. [18]

      (18) Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.;Soffers, A. E. M. F.; Rietjens, I. M. C. M. Free Raobc. Med.2001, 7, 869.

    19. [19]

      (19) Plaper, A.; lob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.;Jerala, R. Biochem. Biophys. Res. Commun. 2003, 306, 530.doi: 10.1016/S0006-291X(03)01006-4

    20. [20]

      (20) Solimani, R. Biochim. Biophys. Acta 1997, 1336, 281. doi: 10.1016/S0304-4165(97)00038-X

    21. [21]

      (21) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28 (10),2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28 (10), 2363.]doi: 10.3866/PKU.WHXB201209172

    22. [22]

      (22) Huang, Y. Y.; Yang, X. F.; Li, H. T.; Ji, X. F.; Cheng, H. L.;Zhao, Y. J.; Guo, D. C.; Li, L.; Liu, S. Y. Acta Phys. -Chim. Sin.2012, 28 (10), 2390. [黄阳玉, 阳秀凤, 李昊田, 纪晓峰, 程洪礼, 赵蕴杰, 郭大川, 李林, 刘士勇. 物理化学学报, 2012, 28 (10), 2390.] doi: 10.3866/PKU.WHXB201209111

    23. [23]

      (23) Zhang, M.; Zheng, Y. P.; Jiang, X. N.;Wang, C. S. ActaPhys. -Chim. Sin. 2010, 26 (3), 735. [张敏, 郑艳萍, 姜笑楠, 王长生. 物理化学学报, 2010, 26 (3), 735.] doi: 10.3866/PKU.WHXB20100235

    24. [24]

      (24) Liu, D. J.;Wang, C. S. Acta Phys. -Chim. Sin. 2012, 28 (12),2809. [刘冬佳, 王长生. 物理化学学报, 2012, 28 (12), 2809.]doi: 10.3866/PKU.WHXB201209263

    25. [25]

      (25) Dong, H.; Hua,W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,2941. doi: 10.1021/jp0709860

    26. [26]

      (26) Jiang, X. N.;Wang, C. S. Sci. China Ser. Chem. 2010, 8, 1754.

    27. [27]

      (27) Li, Y.;Wang, C. S. Sci. China Ser. Chem. 2011, 54 (11), 1759.doi: 10.1007/s11426-011-4411-y

    28. [28]

      (28) Kobko, R.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,10389. doi: 10.1021/jp0365209

    29. [29]

      (29) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313.doi: 10.1021/ja003482n

    30. [30]

      (30) Frish, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gassian 03,Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    31. [31]

      (31) Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem.2001, 22, 545.

    32. [32]

      (32) Yang, Y. J. Phys. Chem. A 2012, 116, 10150. doi: 10.1021/jp304420c

    33. [33]

      (33) Yang, Y. J. Phys. Chem. A 2011, 115, 9043. doi: 10.1021/jp204531e

    34. [34]

      (34) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940.

    35. [35]

      (35) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h


  • 加载中
    1. [1]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    7. [7]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    11. [11]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    17. [17]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    18. [18]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(612)
  • Abstract views(983)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return