Citation: WANG Qiang, HUANG Li-Ping, YU Hong-Tao, QUAN Xie, CHEN Guo-Hua. Recent Developments of Graphene Electrodes in Bioelectrochemical Systems[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 889-896. doi: 10.3866/PKU.WHXB201303151
-
Sustainable societies require development of cost-effective methods for harnessing energy from wastes and wastewater, and alternatively capturing this energy to make other useful chemicals with simultaneous wastes and wastewater treatment. Recently developed bioelectrochemical systems (BESs) that use microorganisms to catalyze different electrochemical reactions are promising for capturing the energy in wastes and wastewater for diverse purposes. A BES is called a microbial fuel cell (MFC) if electricity is generated and the Gibbs free energy change of the corresponding reaction is negative. Conversely, when the Gibbs free energy change of the overall reaction is positive, power needs to be supplied to drive this non-spontaneous reaction, and this BES is regarded as a microbial electrolysis cell (MEC). The electrode character is considered to be a key factor for triggering the applicable BESs. Graphene has been recently used as the electrode and investigated in BESs because of its unique structure and excellent properties. Here, an up-to-date review is provided on the recent research and development in BES-based graphene, particularly in MFC-based graphene. The recent pristine graphene, doped graphene, and supported graphene research in MFCs is described in detail. The potential applications of graphene in MECs and the scientific and technical challenges are also discussed.
-
-
[1]
(1) Logan, B. E. Nat. Rev. Microbiol. 2009, 7 (5), 375. doi: 10.1038/nrmicro2113
-
[2]
(2) Logan, B. E. Appl. Microbiol. Biotechnol. 2010, 85 (6), 1665.doi: 10.1007/s00253-009-2378-9
-
[3]
(3) Logan, B. E.; Rabaey, K. Science 2012, 337 (6095), 686. doi: 10.1126/science.1217412
-
[4]
(4) Wei, J.; Liang, P.; Huang, X. Bioresour. Technol. 2011, 102 (20),9335. doi: 10.1016/j.biortech.2011.07.019
-
[5]
(5) Zhou, M. H.; Chi, M. C.; Luo, J. M.; He, H. H.; Jin, T. J. PowerSources 2011, 196 (10), 4427. doi: 10.1016/j.jpowsour.2011.01.012
-
[6]
(6) Jiang, L. L.; Lu, X. J. Funct. Mater. 2012, 23 (43), 2881. [姜丽丽, 鲁雄. 功能材料, 2012, 23 (43), 2881.]
-
[7]
(7) Sun, Y. Q.;Wu, Q.; Shi, G. Q. Energy Environ. Sci. 2011, 4 (4),1113. doi: 10.1039/c0ee00683a
-
[8]
(8) Wang, H.; Hu, Y. H. Energy Environ. Sci. 2012, 5 (8), 8182. doi: 10.1039/c2ee21905k
-
[9]
(9) Huang, C. C.; Li, C. H.; Shi, G. Q. Energy Environ. Sci. 2012, 5 (10), 8848. doi: 10.1039/c2ee22238h
-
[10]
(10) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2012, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
-
[11]
(11) Wu, J. J.;Wang, Y.; Zhang, D.; Hou, B. R. J. Power Sources2011, 196 (3), 1141. doi: 10.1016/j.jpowsour.2010.07.087
-
[12]
(12) Xiao, L.; Damien, J.; Luo, J. Y.; Jang, H. D.; Huang, J. X.; He,Z. J. Power Sources 2012, 208 (1), 187.
-
[13]
(13) Li, S. Z.; Hu, Y. Y.; Xu, Q.; Sun, J.; Hou, B.; Zhang, Y. P.J. Power Sources 2012, 213 (1), 265.
-
[14]
(14) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Ye, J. S. J. Power Sources2012, 197 (1), 93.
-
[15]
(15) Wen, Q.;Wang, S. Y.; Yan, J.; Cong, L. J.; Pan, Z. C.; Ren, Y.M.; Fan, Z. G. J. Power Sources 2012, 216 (1), 187.
-
[16]
(16) Ahmed, M. S.; Jeon, S. J. Power Sources 2012, 218 (1), 168.
-
[17]
(17) Liu, J.; Qiao, Y.; Guo, C. X.; Lim, S.; Song, H.; Li, C. M.Bioresour. Technol. 2012, 114 (1), 275.
-
[18]
(18) Palaniselvam, T.; Aiyappa, H. B.; Kurun t, S. J. Mater. Chem.2012, 22 (45), 23799. doi: 10.1039/c2jm35128e
-
[19]
(19) Yang, Z.; Yao, Z.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.;Chen, X. A.; Huang, S. M. J. Am. Chem. Soc. 2012, 6 (1), 205.
-
[20]
(20) Wu, J. J.; Zhang, D.;Wang, Y.;Wan, Y.; Hou, B. R. J. PowerSources 2012, 198 (1), 122.
-
[21]
(21) Shi, Y. S.; Li, X. H.; Ning, Q. J. Electron. Compon. Mater. 2010,29 (8), 70. [史永胜, 李雪红, 宁青菊. 电子元件与材料, 2010,29 (8), 70.]
-
[22]
(22) Fu, Q.; Bao, X. H. Chin. Sci. Bull. 2009, 54 (18), 2657. [傅强, 包信和. 科学通报, 2009, 54 (18), 2657.] doi: 10.1360/972009-1537
-
[23]
(23) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Zhang,W. D.; Zhang, J. Q.;Ye, J. S.; Huang, X. D.; Yu, C. Z. J. Power Sources 2011, 196 (13), 5402. doi: 10.1016/j.jpowsour.2011.02.067
-
[24]
(24) Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. ACS Nano 2010, 4 (8), 4852. doi: 10.1021/nn101081t
-
[25]
(25) Wang, G. M.; Qian, F.; Saltikov, C.W.; Jiao, Y. Q.; Li, Y. NanoRes. 2011, 4, 563. doi: 10.1007/s12274-011-0112-2
-
[26]
(26) Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.;Wang, Y. Q.Bioresour. Technol. 2012, 116 (1), 453.
-
[27]
(27) Zhuang, L.; Yuan, Y.; Yang, G. Q.; Zhou, S. G. Electrochem.Commun. 2012, 21 (1), 69.
-
[28]
(28) Huang, Y. X.; Liu, X.W.; Xie, J. F.; Sheng, G. P.;Wang, G. Y.;Zhang, Y. Y.; Xu, A.W.; Yu, H, Q. Chem. Commun. 2011, 47 (20), 5795. doi: 10.1039/c1cc10159e
-
[29]
(29) Xie, X.; Yu, G. H.; Liu, Z. N.; Criddle, C. S.; Cui, Y. EnergyEnviron. Sci. 2012, 5 (5), 6862. doi: 10.1039/c2ee03583a
-
[30]
(30) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.;Wang, J. G.; Li, X. N. ActaPhys. -Chim. Sin. 2012, 28 (2), 331. [谢鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28 (2), 331.] doi: 10.3866/PKU.WHXB201111021
-
[31]
(31) Hou, J. X.; Liu, Z. L.; Zhang, P. Y. J. Power Sources 2013, 224 (1), 139.
-
[32]
(32) He, Z. M.; Liu, J.; Qiao, Y.; Li, C. M.; Tan, T. T. Y. Nano Lett.2012, 12 (9), 4738. doi: 10.1021/nl302175j
-
[33]
(33) Feng, L. Y.; Chen, Y. G.; Chen, L. ACS Nano 2011, 5 (12), 9611.doi: 10.1021/nn202906f
-
[34]
(34) Gurunathan, S.; Han, J.W.; Dayem, A. A.; Eppakayala, V.; Kim,J. N. Int. J. Nanomed. 2012, 7 (1), 5901.
-
[35]
(35) Agarwal, S.; Zhou, X. Z.; Ye, F.; He, Q. Y.; Chen, G. C. K.; Soo,J.; Boey, F.; Zhang, H.; Chen, P. Langmuir 2010, 26 (4), 2244.doi: 10.1021/la9048743
-
[36]
(36) Jain, A.; Zhang, X. M.; Pastorella, G.; Connolly, J. O.; Barry,N.;Woolley, R.; Krishnamurthy, S.; Marsili, E.Bioelectrochemistry 2012, 87 (Suppl. 1), 28.
-
[37]
(37) Qiao, Y.; Bao, S. J.; Li, C. M.; Cui, X. Q.; Lu, Z. S.; Guo, J. ACSNano 2008, 2 (1), 113. doi: 10.1021/nn700102s
-
[38]
(38) Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C.Langmuir 2010, 26 (3), 1936. doi: 10.1021/la902496u
-
[39]
(39) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin.2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221
-
[40]
(40) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.H.; ng, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. EnergyEnviron. Sci. 2012, 5 (7), 7936. doi: 10.1039/c2ee21802j
-
[41]
(41) Liu, Q.; Zhang, H. Y.; Zhong, H.W.; Zhang, S. M.; Chen, S. L.Electrochim. Acta 2012, 81 (1), 313.
-
[42]
(42) Wen, Q.; Liu, Z. M.; Chen, Y.; Li, K. F.; Zhu, N. Z. ActaPhys. -Chim. Sin. 2008, 24 (6), 1063. [温青, 刘智敏,陈野, 李凯峰, 朱宁正. 物理化学学报, 2008, 24 (6), 1063.]doi: 10.3866/PKU.WHXB20080626
-
[43]
(43) Wang,W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28 (12),2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28 (12), 2879.]doi: 10.3866/PKU.WHXB201209252
-
[44]
(44) Zhang, L. X.; Liu, C. S.; Zhuang, L.; Li,W. S.; Zhou, S. G.Biosens. Bioelectron. 2009, 24 (9), 2825. doi: 10.1016/j.bios.2009.02.010
-
[45]
(45) Liang, Y. Y.; Li, Y. G.;Wang, H. L.; Zhou, J. G.;Wang, J.;Regier, T.; Dai, H. J. Nat. Mater. 2011, 10 (10), 780. doi: 10.1038/nmat3087
-
[46]
(46) Yong, Y. C.; Dong, X. C.; Mary, B. C. P.; Song, H.; Chen, P.ACS Nano 2012, 6 (3), 2394. doi: 10.1021/nn204656d
-
[47]
(47) Pirbadian, S.; EI-Naggar, M. Y. Phys. Chem. Chem. Phys. 2012,14 (40), 13802. doi: 10.1039/c2cp41185g
-
[48]
(48) Cheng, J. S.; Du, J.; Zhu,W. J. Carbohyd. Polym. 2012, 88 (1),61. doi: 10.1016/j.carbpol.2011.11.065
-
[49]
(49) Huang, L. P.; Regan, J. M.; Quan, X. Bioresour. Technol. 2011,102 (1), 316. doi: 10.1016/j.biortech.2010.06.096
-
[50]
(50) Liu, H.; Grot, S.; Logan, B. E. Environ. Sci. Technol. 2005, 39 (11), 4317. doi: 10.1021/es050244p
-
[51]
(51) Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J.W.; Metz,S. J.; Buisman, C. J. N. Int. J. Hydrog. Energy 2006, 31 (12),1632. doi: 10.1016/j.ijhydene.2005.12.006
-
[52]
(52) Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V. M.; Sleutels,T. J. A.; Jeremiasse, A.W.; Rozendal, R. A. Environ. Sci.Technol. 2008, 42 (23), 8630. doi: 10.1021/es801553z
-
[53]
(53) Wang, L. Y.; Chen, Y. G.; Huang, Q.; Feng, Y. Y.; Zhu, S. M.;Shen, S. B. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1150.doi: 10.1002/jctb.v87.8
-
[54]
(54) Zhang, Y. M.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (21), 12020. doi: 10.1016/j.ijhydene.2010.08.064
-
[55]
(55) Selembo, P. A.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (2), 428. doi: 10.1016/j.ijhydene.2009.11.014
-
[56]
(56) Hu, H.; Fan, Y.; Liu, H. Int. J. Hydrog. Energy 2010, 35 (8),3227. doi: 10.1016/j.ijhydene.2010.01.131
-
[57]
(57) Tokash, J. C.; Logan, B. E. Int. J. Hydrog. Energy 2011, 36 (16),9439. doi: 10.1016/j.ijhydene.2011.05.080
-
[58]
(58) Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley,D. R. Energy Environ. Sci. 2013, 6 (1), 217. doi: 10.1039/c2ee23350a
-
[59]
(59) Logan, B. E. ChemSusChem 2012, 5 (6), 988. doi: 10.1002/cssc.v5.6
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[3]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[4]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[5]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[6]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[7]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[14]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[15]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[16]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[17]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[18]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[19]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[20]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[1]
Metrics
- PDF Downloads(1274)
- Abstract views(1776)
- HTML views(10)