Citation:
LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica,
;2013, 29(06): 1313-1318.
doi:
10.3866/PKU.WHXB201303141
-
To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, palladium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed well on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/ CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ=420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.
-
Keywords:
-
NiS-PdS/CdS
, - Hydrothermal method,
- Co-loading,
- Photocatalysis,
- Hydrogen energy
-
-
-
-
[1]
(1) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203
-
[2]
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
-
[3]
(3) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 doi: 10.1021/jp070911w
-
[4]
(4) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
-
[5]
(5) Chen,W.; Gao, H. Y.; Yang, Y.; Lin, P. B.; Yuan, J.; Shangguan,W. F.; Su, J. C.; Sun, Y. Z. Acta Phys. -Chim. Sin. 2012, 28,2911. [陈威, 高寒阳, 杨俞, 林培宾, 袁坚, 上官文峰,苏佳纯, 孙洋洲. 物理化学学报, 2012, 28, 2911.] doi: 10.3866/PKU.WHXB201208011
-
[6]
(6) Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.;Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrog. Energy 2006, 31, 1999. doi: 10.1016/j.ijhydene.2006.01.014
-
[7]
(7) Chen, X. P.; Shangguan,W. F. Front. Energy doi: 10.1007/s11708-012-0228-4
-
[8]
(8) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y.; Xu, Q.; Ma, B. J.; Li,C. Progress in Chemistry 2009, 21, 2285. [温福宇, 杨金辉,宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21,2285.]
-
[9]
(9) Williams, R. J. Chem. Phys. 1960, 32, 1505. doi: 10.1063/1.1730950
-
[10]
(10) Sathish, M.; Viswanathan, B.; Viswanath, R. P. J. Hydrog. Energy 2006, 31, 891. doi: 10.1016/j.ijhydene.2005.08.002
-
[11]
(11) Li, Y. X.; Xie, Y. Z.; Peng, S. Q.; Lu, G. X.; Li, S. B.Chemosphere 2006, 63, 1312. doi: 10.1016/j.chemosphere.2005.09.004
-
[12]
(12) Sakata, T.; Hashimoto, K.; Kawai, T. J. Phys. Chem. 1984, 88,5214
-
[13]
(13) Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.;Wu, G. P.; Li, C.J. Phys. Chem. C 2011, 115, 12202. doi: 10.1021/jp2006777
-
[14]
(14) Zong, X.; Yan, H. J.;Wu, G. P.; Ma, G. J.;Wen, F. Y.;Wang, L.;Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
-
[15]
(15) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
-
[16]
(16) Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater.2008, 20, 110. doi: 10.1021/cm7029344
-
[17]
(17) Zhang,W.;Wang, Y.;Wang, Z.; Zhong, Z.; Xu, R. Chem. Commun. 2010, 46, 7631. doi: 10.1039/c0cc01562h
-
[18]
(18) Harada, H.; Sakata, T.; Ueda, T. J. Am. Chem. Soc. 1985, 107,1773. doi: 10.1021/ja00292a060
-
[19]
(19) Lin, K.; Chuang, C.; Lee, Y.; Li, F.; Chang, Y. J. Phys. Chem. C2012, 116, 1550. doi: 10.1021/jp209353j
-
[20]
(20) Spanhel, L.;Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987,109, 6632. doi: 10.1021/ja00256a012
-
[21]
(21) Hurum, D. C.; Agrios, A. G.; Gray, K. A. J. Phys. Chem. B2003, 107, 4545. doi: 10.1021/jp0273934
-
[22]
(22) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
-
[23]
(23) Assuncao, N.; Giz, M.; Tremiliosi, G.; nzalez, E.J. Electrochem. Soc. 1997, 144, 2794. doi: 10.1149/1.1837897
-
[24]
(24) Yang, J. H.; Yan, H. J.;Wang, X. L.;Wen, F. Y.;Wang, Z. J.;Fan, D. Y.; Shi, J. Y.; Li, C. J. Catal. 2012, 290, 151.
-
[25]
(25) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27, 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27, 2178.] doi: 10.3866/PKU.WHXB20110904
-
[1]
-
-
-
[1]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[2]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[6]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[7]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[9]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[10]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[11]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[12]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[13]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[14]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[18]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(1426)
- HTML views(83)