Citation: LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1313-1318. doi: 10.3866/PKU.WHXB201303141
-
To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, palladium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed well on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/ CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ=420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.
-
Keywords:
-
NiS-PdS/CdS
, - Hydrothermal method,
- Co-loading,
- Photocatalysis,
- Hydrogen energy
-
-
-
[1]
(1) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203
-
[2]
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
-
[3]
(3) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 doi: 10.1021/jp070911w
-
[4]
(4) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
-
[5]
(5) Chen,W.; Gao, H. Y.; Yang, Y.; Lin, P. B.; Yuan, J.; Shangguan,W. F.; Su, J. C.; Sun, Y. Z. Acta Phys. -Chim. Sin. 2012, 28,2911. [陈威, 高寒阳, 杨俞, 林培宾, 袁坚, 上官文峰,苏佳纯, 孙洋洲. 物理化学学报, 2012, 28, 2911.] doi: 10.3866/PKU.WHXB201208011
-
[6]
(6) Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.;Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrog. Energy 2006, 31, 1999. doi: 10.1016/j.ijhydene.2006.01.014
-
[7]
(7) Chen, X. P.; Shangguan,W. F. Front. Energy doi: 10.1007/s11708-012-0228-4
-
[8]
(8) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y.; Xu, Q.; Ma, B. J.; Li,C. Progress in Chemistry 2009, 21, 2285. [温福宇, 杨金辉,宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21,2285.]
-
[9]
(9) Williams, R. J. Chem. Phys. 1960, 32, 1505. doi: 10.1063/1.1730950
-
[10]
(10) Sathish, M.; Viswanathan, B.; Viswanath, R. P. J. Hydrog. Energy 2006, 31, 891. doi: 10.1016/j.ijhydene.2005.08.002
-
[11]
(11) Li, Y. X.; Xie, Y. Z.; Peng, S. Q.; Lu, G. X.; Li, S. B.Chemosphere 2006, 63, 1312. doi: 10.1016/j.chemosphere.2005.09.004
-
[12]
(12) Sakata, T.; Hashimoto, K.; Kawai, T. J. Phys. Chem. 1984, 88,5214
-
[13]
(13) Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.;Wu, G. P.; Li, C.J. Phys. Chem. C 2011, 115, 12202. doi: 10.1021/jp2006777
-
[14]
(14) Zong, X.; Yan, H. J.;Wu, G. P.; Ma, G. J.;Wen, F. Y.;Wang, L.;Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
-
[15]
(15) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
-
[16]
(16) Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater.2008, 20, 110. doi: 10.1021/cm7029344
-
[17]
(17) Zhang,W.;Wang, Y.;Wang, Z.; Zhong, Z.; Xu, R. Chem. Commun. 2010, 46, 7631. doi: 10.1039/c0cc01562h
-
[18]
(18) Harada, H.; Sakata, T.; Ueda, T. J. Am. Chem. Soc. 1985, 107,1773. doi: 10.1021/ja00292a060
-
[19]
(19) Lin, K.; Chuang, C.; Lee, Y.; Li, F.; Chang, Y. J. Phys. Chem. C2012, 116, 1550. doi: 10.1021/jp209353j
-
[20]
(20) Spanhel, L.;Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987,109, 6632. doi: 10.1021/ja00256a012
-
[21]
(21) Hurum, D. C.; Agrios, A. G.; Gray, K. A. J. Phys. Chem. B2003, 107, 4545. doi: 10.1021/jp0273934
-
[22]
(22) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
-
[23]
(23) Assuncao, N.; Giz, M.; Tremiliosi, G.; nzalez, E.J. Electrochem. Soc. 1997, 144, 2794. doi: 10.1149/1.1837897
-
[24]
(24) Yang, J. H.; Yan, H. J.;Wang, X. L.;Wen, F. Y.;Wang, Z. J.;Fan, D. Y.; Shi, J. Y.; Li, C. J. Catal. 2012, 290, 151.
-
[25]
(25) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27, 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27, 2178.] doi: 10.3866/PKU.WHXB20110904
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[3]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[4]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[5]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[6]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[8]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[11]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[12]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[15]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[16]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[17]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(1296)
- HTML views(63)