Citation: YANG Bin, WU Hui, HU Song-Wei, LÜ Hui-Ling, SONG Ye, ZHU Xu-Fei. Fabrication and Performance of Electrolytic-Electrochemical Hybrid Capacitors[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1013-1020. doi: 10.3866/PKU.WHXB201303122 shu

Fabrication and Performance of Electrolytic-Electrochemical Hybrid Capacitors

  • Received Date: 21 January 2013
    Available Online: 12 March 2013

    Fund Project: 国家自然科学基金(51077072, 61171043)资助项目 (51077072, 61171043)

  • To solve the issue of comparatively low operation voltage of electrochemical capacitors, a hybrid capacitor consisting of the anode electrode of tantalum electrolytic capacitor and the cathode electrode of polyaniline (PANI)/TiO2 with high energy density and high working voltage was developed. The PANI/TiO2 composite electrode for use as the capacitor cathode was prepared by in situ electrochemical polymerization of aniline in porous anodic titania nanotube arrays on titanium foil substrates. The composite electrode showed od rate capability with a specific capacitance of 10.0 mF·cm-2 and a high power density of 0.55 mW·cm-2. Using a dielectric coated anode electrode, the single-cell hybrid capacitor could withstand working voltages as high as 100 V. As the PANI/TiO2 composite cathode only requires a small volume because of its high specific capacitance, available space can be used to enlarge the anode electrode, leading to an increase in specific capacitance of the hybrid capacitor. The hybrid capacitor had high volumetric and gravimetric energy densities, which were about four times and three times higher than those of a tantalum electrolytic capacitor. The short circuit charge-discharge cycle test for the hybrid capacitor at 100 V showed that its capacitance did not decrease, and the equivalent series resistance did not increase after 10000 cycles, indicating excellent cycle stability and power performance. The peak power density was estimated to be 847.5 W·g-1. In addition, electrochemical impedance spectroscopy data indicated that the hybrid capacitor had od impedance and frequency characteristics.

  • 加载中
    1. [1]

      (1) Conway, B. E. Electrochemical Supercapacitors, 1st ed.; KluwerAcademic Publishing/Plenum Publisher: New York, 1999; pp11-30.

    2. [2]

      (2) Burke, A. J. Power Sources 2000, 91, 37. doi: 10.1016/S0378-7753(00)00485-7

    3. [3]

      (3) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035

    4. [4]

      (4) Yang, X.; Zhu, J.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2833.doi: 10.1016/S0378-7753(00)00485-7

    5. [5]

      (3) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035

    6. [6]

      (4) Yang, X.; Zhu, J.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2833.

    7. [7]

      (5) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim.Sin. 2012, 28 (2), 373. [朱剑波, 徐友龙, 王杰, 王景平.物理化学学报, 2012, 28 (2), 373.] doi: 10.3866/PKU.WHXB201112021

    8. [8]

      (6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332, 1537. doi: 10.1126/science.1200770

    9. [9]

      (7) Yang, H. S.; Zhou, X.; Zhang, Q.W. Acta Phys. -Chim. Sin.2005, 21 (4), 414. [杨红生, 周啸, 张庆武. 物理化学学报,2005, 21 (4), 414.] doi: 10.3866/PKU.WHXB20050414

    10. [10]

      (8) Evans, D. A. High Energy Density Electrolytic-ElectrochemicalHybrid Capacitor. http://www.evanscap.com/pdf/carts14.pdf." target=_blank>10.3866/PKU.WHXB201112021

    11. [11]

      (6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332, 1537. doi: 10.1126/science.1200770

    12. [12]

      (7) Yang, H. S.; Zhou, X.; Zhang, Q.W. Acta Phys. -Chim. Sin.2005, 21 (4), 414. [杨红生, 周啸, 张庆武. 物理化学学报,2005, 21 (4), 414.] doi: 10.3866/PKU.WHXB20050414

    13. [13]

      (8) Evans, D. A. High Energy Density Electrolytic-ElectrochemicalHybrid Capacitor. http://www.evanscap.com/pdf/carts14.pdf.

    14. [14]

      (9) Jun, Y.; Park, J. H.; Kang, M. G. Chem. Commun. 2012, 48,6456. doi: 10.1039/c2cc30733b

    15. [15]

      (10) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010,22 (6), 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展,2010, 22 (6), 1035.]doi: 10.1039/c2cc30733b

    16. [16]

      (10) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010,22 (6), 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展,2010, 22 (6), 1035.]

    17. [17]

      (11) Zhu, X. F.; Han, H.; Song, Y.; Duan,W. Q. Acta Phys. -Chim.Sin. 2012, 28 (6), 1291. [朱绪飞, 韩华, 宋晔, 段文强.物理化学学报, 2012, 28 (6), 1291.] doi: 10.3866/PKU.WHXB201204093

    18. [18]

      (12) Xie, K. Y.; Li, J.; Lai, Y. Q.; Zhang, Z. A.; Liu, Y. X.; Zhang, G.G.; Huang, H. T. Nanoscale 2011, 3, 2202. doi: 10.1039/c0nr00899k

    19. [19]

      (13) Han, S. C.; Doh, J. M.; Yoon, J. K.; Kim, G. H.; Byun, J. Y.;Han, S. H.; Hong, K. T.; Kwun, S. I. Met. Mater. Int. 2009, 15 (3), 493. doi: 10.1007/s12540-009-0493-x

    20. [20]

      (14) Yu, Q. Q.; Chu, C. L.; Lin, P. H.; Sheng, X. B.; Guo, C.; Dong,Y. S. Rare Metal Mat. Eng. 2011, 40 (Suppl.2), 201. [余青青,储成林, 林萍华, 盛晓波, 郭超, 董寅生. 稀有金属材料与工程, 2011, 40 (Suppl.2), 201.]" target=_blank>10.3866/PKU.WHXB201204093

    21. [21]

      (12) Xie, K. Y.; Li, J.; Lai, Y. Q.; Zhang, Z. A.; Liu, Y. X.; Zhang, G.G.; Huang, H. T. Nanoscale 2011, 3, 2202. doi: 10.1039/c0nr00899k

    22. [22]

      (13) Han, S. C.; Doh, J. M.; Yoon, J. K.; Kim, G. H.; Byun, J. Y.;Han, S. H.; Hong, K. T.; Kwun, S. I. Met. Mater. Int. 2009, 15 (3), 493. doi: 10.1007/s12540-009-0493-x

    23. [23]

      (14) Yu, Q. Q.; Chu, C. L.; Lin, P. H.; Sheng, X. B.; Guo, C.; Dong,Y. S. Rare Metal Mat. Eng. 2011, 40 (Suppl.2), 201. [余青青,储成林, 林萍华, 盛晓波, 郭超, 董寅生. 稀有金属材料与工程, 2011, 40 (Suppl.2), 201.]

    24. [24]

      (15) Ma, L.; Tang, Q. Journal of Chongqing University (NaturalScience Edition) 2002, 25 (2), 124. [马利, 汤琪. 重庆大学学报(自然科学版), 2002, 25 (2), 124.]

    25. [25]

      (16) Prasad, K. R.; Munichandraiah, N. J. Power Sources 2002, 112,443.

    26. [26]

      (17) Huang,W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem.Soc. Faraday Trans. I 1986, 82, 2385.

    27. [27]

      (18) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; vanSchalkwijk,W. Nat. Mater. 2005, 4, 366. doi: 10.1038/nmat1368

    28. [28]

      (19) Cho, S. I.; Lee, S. B. Accounts Chem. Res. 2008, 41 (6), 699.doi: 10.1021/ar7002094

    29. [29]

      (20) Zhang, Q. Q.; Li, Y.; Feng, Y. Y.; Feng,W. Electrochim. Acta2013, 90, 95. doi: 10.1016/j.electacta.2012.11.035

    30. [30]

      (21) Tian, S. J.; Baba, A.; Liu, J. Y.;Wang, Z. H.; Knoll,W.; Park, M.K.; Advincula, R. Adv. Funct. Mater. 2003, 13, 473. doi: 10.1002/adfm.200304320

    31. [31]

      (22) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. ActaPhys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝,骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.]doi: 10.3866/PKU.WHXB201207181

    32. [32]

      (23) Dhawale, D. S.; Vinub, A.; Lokhandea, C. D. Electrochim. Acta2011, 56, 9482. doi: 10.1016/j.electacta.2011.08.042

    33. [33]

      (24) Pud, A. A. Synth. Met. 1994, 66, 1. doi: 10.1016/0379-6779(94)90155-4

    34. [34]

      (25) Zhang, L. Y.; Yao, X. Dielectric Physics; Xi'an Jiao TongUniversity Press: Xi'an, 1991; pp 193-221. [张良莹, 姚熹.电介质物理. 西安: 西安交通大学出版社, 1991: 193-221.]" target=_blank>10.1038/nmat1368

    35. [35]

      (19) Cho, S. I.; Lee, S. B. Accounts Chem. Res. 2008, 41 (6), 699.doi: 10.1021/ar7002094

    36. [36]

      (20) Zhang, Q. Q.; Li, Y.; Feng, Y. Y.; Feng,W. Electrochim. Acta2013, 90, 95. doi: 10.1016/j.electacta.2012.11.035

    37. [37]

      (21) Tian, S. J.; Baba, A.; Liu, J. Y.;Wang, Z. H.; Knoll,W.; Park, M.K.; Advincula, R. Adv. Funct. Mater. 2003, 13, 473. doi: 10.1002/adfm.200304320

    38. [38]

      (22) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. ActaPhys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝,骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.]doi: 10.3866/PKU.WHXB201207181

    39. [39]

      (23) Dhawale, D. S.; Vinub, A.; Lokhandea, C. D. Electrochim. Acta2011, 56, 9482. doi: 10.1016/j.electacta.2011.08.042

    40. [40]

      (24) Pud, A. A. Synth. Met. 1994, 66, 1. doi: 10.1016/0379-6779(94)90155-4

    41. [41]

      (25) Zhang, L. Y.; Yao, X. Dielectric Physics; Xi'an Jiao TongUniversity Press: Xi'an, 1991; pp 193-221. [张良莹, 姚熹.电介质物理. 西安: 西安交通大学出版社, 1991: 193-221.]

    42. [42]

      (26) Chang, T. Y.;Wang, X.; Evans, D. A.; Robinson, S. L.; Zheng, J.P. J. Power Sources 2002, 110, 138.

    43. [43]

      (27) Sherrill, S. A.; Banerjee, P.; Rubloff, G.W.; Lee, S. B. Phys.Chem. Chem. Phys. 2011, 13, 20714.


  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    8. [8]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    13. [13]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    14. [14]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    18. [18]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

Metrics
  • PDF Downloads(839)
  • Abstract views(1006)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return