Citation:
YANG Bin, WU Hui, HU Song-Wei, LÜ Hui-Ling, SONG Ye, ZHU Xu-Fei. Fabrication and Performance of Electrolytic-Electrochemical Hybrid Capacitors[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 1013-1020.
doi:
10.3866/PKU.WHXB201303122
-
To solve the issue of comparatively low operation voltage of electrochemical capacitors, a hybrid capacitor consisting of the anode electrode of tantalum electrolytic capacitor and the cathode electrode of polyaniline (PANI)/TiO2 with high energy density and high working voltage was developed. The PANI/TiO2 composite electrode for use as the capacitor cathode was prepared by in situ electrochemical polymerization of aniline in porous anodic titania nanotube arrays on titanium foil substrates. The composite electrode showed od rate capability with a specific capacitance of 10.0 mF·cm-2 and a high power density of 0.55 mW·cm-2. Using a dielectric coated anode electrode, the single-cell hybrid capacitor could withstand working voltages as high as 100 V. As the PANI/TiO2 composite cathode only requires a small volume because of its high specific capacitance, available space can be used to enlarge the anode electrode, leading to an increase in specific capacitance of the hybrid capacitor. The hybrid capacitor had high volumetric and gravimetric energy densities, which were about four times and three times higher than those of a tantalum electrolytic capacitor. The short circuit charge-discharge cycle test for the hybrid capacitor at 100 V showed that its capacitance did not decrease, and the equivalent series resistance did not increase after 10000 cycles, indicating excellent cycle stability and power performance. The peak power density was estimated to be 847.5 W·g-1. In addition, electrochemical impedance spectroscopy data indicated that the hybrid capacitor had od impedance and frequency characteristics.
-
-
-
[1]
(1) Conway, B. E. Electrochemical Supercapacitors, 1st ed.; KluwerAcademic Publishing/Plenum Publisher: New York, 1999; pp11-30.
-
[2]
(2) Burke, A. J. Power Sources 2000, 91, 37. doi: 10.1016/S0378-7753(00)00485-7
-
[3]
(3) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035
-
[4]
(4) Yang, X.; Zhu, J.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2833.doi: 10.1016/S0378-7753(00)00485-7
-
[5]
(3) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035
-
[6]
(4) Yang, X.; Zhu, J.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2833.
-
[7]
(5) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim.Sin. 2012, 28 (2), 373. [朱剑波, 徐友龙, 王杰, 王景平.物理化学学报, 2012, 28 (2), 373.] doi: 10.3866/PKU.WHXB201112021
-
[8]
(6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332, 1537. doi: 10.1126/science.1200770
-
[9]
(7) Yang, H. S.; Zhou, X.; Zhang, Q.W. Acta Phys. -Chim. Sin.2005, 21 (4), 414. [杨红生, 周啸, 张庆武. 物理化学学报,2005, 21 (4), 414.] doi: 10.3866/PKU.WHXB20050414
-
[10]
(8) Evans, D. A. High Energy Density Electrolytic-ElectrochemicalHybrid Capacitor. http://www.evanscap.com/pdf/carts14.pdf." target=_blank>10.3866/PKU.WHXB201112021
-
[11]
(6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332, 1537. doi: 10.1126/science.1200770
-
[12]
(7) Yang, H. S.; Zhou, X.; Zhang, Q.W. Acta Phys. -Chim. Sin.2005, 21 (4), 414. [杨红生, 周啸, 张庆武. 物理化学学报,2005, 21 (4), 414.] doi: 10.3866/PKU.WHXB20050414
-
[13]
(8) Evans, D. A. High Energy Density Electrolytic-ElectrochemicalHybrid Capacitor. http://www.evanscap.com/pdf/carts14.pdf.
-
[14]
(9) Jun, Y.; Park, J. H.; Kang, M. G. Chem. Commun. 2012, 48,6456. doi: 10.1039/c2cc30733b
-
[15]
(10) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010,22 (6), 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展,2010, 22 (6), 1035.]doi: 10.1039/c2cc30733b
-
[16]
(10) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010,22 (6), 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展,2010, 22 (6), 1035.]
-
[17]
(11) Zhu, X. F.; Han, H.; Song, Y.; Duan,W. Q. Acta Phys. -Chim.Sin. 2012, 28 (6), 1291. [朱绪飞, 韩华, 宋晔, 段文强.物理化学学报, 2012, 28 (6), 1291.] doi: 10.3866/PKU.WHXB201204093
-
[18]
(12) Xie, K. Y.; Li, J.; Lai, Y. Q.; Zhang, Z. A.; Liu, Y. X.; Zhang, G.G.; Huang, H. T. Nanoscale 2011, 3, 2202. doi: 10.1039/c0nr00899k
-
[19]
(13) Han, S. C.; Doh, J. M.; Yoon, J. K.; Kim, G. H.; Byun, J. Y.;Han, S. H.; Hong, K. T.; Kwun, S. I. Met. Mater. Int. 2009, 15 (3), 493. doi: 10.1007/s12540-009-0493-x
-
[20]
(14) Yu, Q. Q.; Chu, C. L.; Lin, P. H.; Sheng, X. B.; Guo, C.; Dong,Y. S. Rare Metal Mat. Eng. 2011, 40 (Suppl.2), 201. [余青青,储成林, 林萍华, 盛晓波, 郭超, 董寅生. 稀有金属材料与工程, 2011, 40 (Suppl.2), 201.]" target=_blank>10.3866/PKU.WHXB201204093
-
[21]
(12) Xie, K. Y.; Li, J.; Lai, Y. Q.; Zhang, Z. A.; Liu, Y. X.; Zhang, G.G.; Huang, H. T. Nanoscale 2011, 3, 2202. doi: 10.1039/c0nr00899k
-
[22]
(13) Han, S. C.; Doh, J. M.; Yoon, J. K.; Kim, G. H.; Byun, J. Y.;Han, S. H.; Hong, K. T.; Kwun, S. I. Met. Mater. Int. 2009, 15 (3), 493. doi: 10.1007/s12540-009-0493-x
-
[23]
(14) Yu, Q. Q.; Chu, C. L.; Lin, P. H.; Sheng, X. B.; Guo, C.; Dong,Y. S. Rare Metal Mat. Eng. 2011, 40 (Suppl.2), 201. [余青青,储成林, 林萍华, 盛晓波, 郭超, 董寅生. 稀有金属材料与工程, 2011, 40 (Suppl.2), 201.]
-
[24]
(15) Ma, L.; Tang, Q. Journal of Chongqing University (NaturalScience Edition) 2002, 25 (2), 124. [马利, 汤琪. 重庆大学学报(自然科学版), 2002, 25 (2), 124.]
-
[25]
(16) Prasad, K. R.; Munichandraiah, N. J. Power Sources 2002, 112,443.
-
[26]
(17) Huang,W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem.Soc. Faraday Trans. I 1986, 82, 2385.
-
[27]
(18) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; vanSchalkwijk,W. Nat. Mater. 2005, 4, 366. doi: 10.1038/nmat1368
-
[28]
(19) Cho, S. I.; Lee, S. B. Accounts Chem. Res. 2008, 41 (6), 699.doi: 10.1021/ar7002094
-
[29]
(20) Zhang, Q. Q.; Li, Y.; Feng, Y. Y.; Feng,W. Electrochim. Acta2013, 90, 95. doi: 10.1016/j.electacta.2012.11.035
-
[30]
(21) Tian, S. J.; Baba, A.; Liu, J. Y.;Wang, Z. H.; Knoll,W.; Park, M.K.; Advincula, R. Adv. Funct. Mater. 2003, 13, 473. doi: 10.1002/adfm.200304320
-
[31]
(22) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. ActaPhys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝,骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.]doi: 10.3866/PKU.WHXB201207181
-
[32]
(23) Dhawale, D. S.; Vinub, A.; Lokhandea, C. D. Electrochim. Acta2011, 56, 9482. doi: 10.1016/j.electacta.2011.08.042
-
[33]
(24) Pud, A. A. Synth. Met. 1994, 66, 1. doi: 10.1016/0379-6779(94)90155-4
-
[34]
(25) Zhang, L. Y.; Yao, X. Dielectric Physics; Xi'an Jiao TongUniversity Press: Xi'an, 1991; pp 193-221. [张良莹, 姚熹.电介质物理. 西安: 西安交通大学出版社, 1991: 193-221.]" target=_blank>10.1038/nmat1368
-
[35]
(19) Cho, S. I.; Lee, S. B. Accounts Chem. Res. 2008, 41 (6), 699.doi: 10.1021/ar7002094
-
[36]
(20) Zhang, Q. Q.; Li, Y.; Feng, Y. Y.; Feng,W. Electrochim. Acta2013, 90, 95. doi: 10.1016/j.electacta.2012.11.035
-
[37]
(21) Tian, S. J.; Baba, A.; Liu, J. Y.;Wang, Z. H.; Knoll,W.; Park, M.K.; Advincula, R. Adv. Funct. Mater. 2003, 13, 473. doi: 10.1002/adfm.200304320
-
[38]
(22) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. ActaPhys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝,骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.]doi: 10.3866/PKU.WHXB201207181
-
[39]
(23) Dhawale, D. S.; Vinub, A.; Lokhandea, C. D. Electrochim. Acta2011, 56, 9482. doi: 10.1016/j.electacta.2011.08.042
-
[40]
(24) Pud, A. A. Synth. Met. 1994, 66, 1. doi: 10.1016/0379-6779(94)90155-4
-
[41]
(25) Zhang, L. Y.; Yao, X. Dielectric Physics; Xi'an Jiao TongUniversity Press: Xi'an, 1991; pp 193-221. [张良莹, 姚熹.电介质物理. 西安: 西安交通大学出版社, 1991: 193-221.]
-
[42]
(26) Chang, T. Y.;Wang, X.; Evans, D. A.; Robinson, S. L.; Zheng, J.P. J. Power Sources 2002, 110, 138.
-
[43]
(27) Sherrill, S. A.; Banerjee, P.; Rubloff, G.W.; Lee, S. B. Phys.Chem. Chem. Phys. 2011, 13, 20714.
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[5]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[6]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[7]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[8]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[9]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[10]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[11]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[14]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[15]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[16]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[17]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[18]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[19]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[20]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[1]
Metrics
- PDF Downloads(839)
- Abstract views(958)
- HTML views(22)