Citation: CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 989-995. doi: 10.3866/PKU.WHXB201303121 shu

Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol

  • Received Date: 17 December 2012
    Available Online: 12 March 2013

    Fund Project: 国家自然科学基金(21275041, 21235002, 21221003) (21275041, 21235002, 21221003) 湖南省自然科学基金(12JJ2010) (12JJ2010)高等学校博士学科点专项科研基金(20110161110009)资助项目 (20110161110009)

  • Carbon nanotubes were non-covalently functionalized by poly(diallyldimethylammonium chloride) (PDDA). Here, PDDA has three roles: reductant for the metal precursor of PtCl62-, stabilizer for in-situ produced Pt nanoparticles (Pt NPs), and anti-corrosion film for carbon nanotubes (CNTs). Surface-functionalization of CNTs with PDDA was characterized by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis, and Raman spectroscopy. The results indicated that the surface of CNTs was successfully coated with PDDA film by π-π stacking interactions, and the functionalization process had no detrimental effect on the structure of the CNTs. The obtained catalyst (Pt NPs/ CNTs-PDDA) was characterized by transmission electron microscopy, and the results showed that Pt NPs with an average diameter of ca 2 nm were highly dispersed on the surface of CNTs-PDDA. The electrocatalytic properties of Pt NPs/CNTs-PDDA nanohybrids for methanol oxidation were further characterized by cyclic voltammetry and chronoamperometry. Compared with Pt NPs supported on the pristine CNTs, the Pt NPs/CNTs-PDDA catalyst had higher electrochemical surface area and specific mass activity, and better stability towards methanol electro-oxidation.

  • 加载中
    1. [1]

      (1) (a) McGrath, K. M.; Prakash, G. K. S.; Olah, G. A. J. Ind. Eng.Chem. 2004, 10 (7), 1063.

    2. [2]

      (b) Aricò, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1

    3. [3]

      (2), 133.

    4. [4]

      (c) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.;Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95.

    5. [5]

      (2) (a) Colón-Mercado, H. R.; Kim, H.; Popov, B. N. Electrochem.Commun. 2004, 6 (8), 795. doi: 10.1016/j.elecom.2004.05.028

    6. [6]

      (b) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B2004, 108 (24), 8234.

    7. [7]

      (3) (a)Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.;Wang, Z. B.;Gao, Y. Z. J. Power Sources 2007, 171 (2), 331. doi: 10.1016/j.jpowsour.2007.06.084

    8. [8]

      (b) Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.;Cherepanova, S. V.; Kryukova, G. N.; Stimming, U. J. PowerSources 2005, 145 (2), 178.

    9. [9]

      (c)Wang, Z. B.; Yin, G. P.; Shi, P. F. Carbon 2006, 44 (1), 133.

    10. [10]

      (d) Zhao, Y.; E. Y.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H.Electrochim. Acta 2007, 52 (19), 5873.

    11. [11]

      (e) Xu, Q. J.; Zhou, X. J.; Li, Q. X. Acta Phys. -Chim. Sin. 2010,26 (8), 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26 (8), 2135.] doi: 10.3866/PKU.WHXB20100802

    12. [12]

      (4) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc.2005, 127 (17), 6146. doi: 10.1021/ja0508828

    13. [13]

      (5) (a) Hernadi, K.; Siska, A.; Thiên-Nga, L.; Forró, L.; Kiricsi, I.Solid State Ionics 2001, 141-142, 203.

    14. [14]

      (b) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem.Commun. 2008, 10 (7), 1101.

    15. [15]

      (c) Xu, H.; Zeng, L. P.; Xing, S. J.; Shi, G. Y.; Xian, Y. Z.; Jin,L. T. Electrochem. Commun. 2008, 10 (12), 1839.

    16. [16]

      (6) (a)Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19 (26), 265601. doi: 10.1088/0957-4484/19/26/265601

    17. [17]

      (b)Wang, S. Y.; Jiang, S. P.; White, T. J.; Guo, J.;Wang, X.J. Phys. Chem. C 2009, 113 (43), 18935.

    18. [18]

      (c) Sanles-Sobrido, M.; Correa-Duarte, M. A.; Carregal-Romero, S.; Rodríguez- nzález, B.; Álvarez-Puebla, R. A.;Hervés, P.; Liz-Marzán, L. M. Chem. Mater. 2009, 21 (8), 1531.

    19. [19]

      (7) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys.Chem. B 2006, 110 (24), 11775.

    20. [20]

      (8) (a) Shrestha, S.; Liu, Y.; Mustain,W. E. Catal. Rev. 2011, 53 (3),256. doi: 10.1080/01614940.2011.596430

    21. [21]

      (b) Shao, Y.; Yin, G.; Gao, Y. J. Power Sources 2007, 171 (2),558.

    22. [22]

      (9) Colmenares, L. C.;Wurth, A.; Jusys, Z.; Behm, R. J. J. PowerSources 2009, 190 (1), 14.

    23. [23]

      (10) Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G.P.; Lin, Y. H. ACS Nano 2011, 5 (3), 1785.

    24. [24]

      (11) (a) He,W.; Zou, L. L.; Zhou, Y.; Lu, X. J.; Li, Y.; Zhang, X. G.;Yang, H. Chem. J. Chin. Univ. 2012, 33 (1), 133. [何卫, 邹亮亮, 周毅, 卢向军, 李媛, 张校刚, 杨辉. 高等学校化学学报, 2012, 33 (1), 133.]

    25. [25]

      (b) He,W.; Jiang, H. J.; Zhou, Y.; Yang, S. D.; Xue, X. Z.; Zou,Z. Q.; Zhang, X. G.; Akins, D. L.; Yang, H. Carbon 2012, 50 (1), 265.

    26. [26]

      (c) Shen, X. F.; Chen, Q.; Pang, Y. H.; Cui, Y.; Qian, H. Sci.China Chem. 2011, 41 (7), 1184. 沈晓芳, 陈沁, 庞月红,崔燕, 钱和. 中国科学: 化学, 2011, 41 (7), 1184.]

    27. [27]

      (d) Qin, X.;Wang, H.;Wang, X.; Miao, Z.; Chen, L.; Zhao,W.;Shan, M.; Chen, Q. Sensors and Actuators B: Chemical 2010,147 (2), 593.

    28. [28]

      (12) (a) Chakraborty, S.; Raj, C. R. Carbon 2010, 48 (11), 3242. doi: 10.1016/j.carbon.2010.05.014

    29. [29]

      (b) Yang, D. Q.; Rochette, J. F.; Sacher, E. J. Phys. Chem. B2005, 109 (10), 4481.

    30. [30]

      (13) Chen, H. J.;Wang, Y. L.;Wang, Y. Z.; Dong, S. J.;Wang, E.Polymer 2006, 47 (2), 763. doi: 10.1016/j.polymer.2005.11.034

    31. [31]

      (14) Wang, S. Y.; Yu, D. S.; Dai, L. M. J. Am. Chem. Soc. 2011, 133 (14), 5182.

    32. [32]

      (15) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007,129 (32), 9999.

    33. [33]

      (16) Li, L.; Xing, Y. J. Electrochem. Soc. 2006, 153 (10), A1823.

    34. [34]

      (17) (a)Wang, J.; Yin, G.; Shao, Y.;Wang, Z.; Gao, Y. J. PowerSources 2008, 176 (1), 128. doi: 10.1016/j.jpowsour.2007.10.057

    35. [35]

      (b) Li, L.; Xing, Y. J. Power Sources 2008, 178 (1), 75.

    36. [36]

      (18) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13.

    37. [37]

      (19) (a) Leger, J. M.; Lamy, C. Berichte der Bunsengesellschaft fürPhysikalische Chemie 1990, 94 (9), 1021. doi: 10.1002/bbpc.v94:9

    38. [38]

      (b) Hamnett, A. Catal. Today 1997, 38 (4), 445.

    39. [39]

      (20) Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. J. Mater. Chem.2009, 19 (42), 7995. doi: 10.1039/b912104h


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(660)
  • Abstract views(1302)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return