Citation:
CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 989-995.
doi:
10.3866/PKU.WHXB201303121
-
Carbon nanotubes were non-covalently functionalized by poly(diallyldimethylammonium chloride) (PDDA). Here, PDDA has three roles: reductant for the metal precursor of PtCl62-, stabilizer for in-situ produced Pt nanoparticles (Pt NPs), and anti-corrosion film for carbon nanotubes (CNTs). Surface-functionalization of CNTs with PDDA was characterized by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis, and Raman spectroscopy. The results indicated that the surface of CNTs was successfully coated with PDDA film by π-π stacking interactions, and the functionalization process had no detrimental effect on the structure of the CNTs. The obtained catalyst (Pt NPs/ CNTs-PDDA) was characterized by transmission electron microscopy, and the results showed that Pt NPs with an average diameter of ca 2 nm were highly dispersed on the surface of CNTs-PDDA. The electrocatalytic properties of Pt NPs/CNTs-PDDA nanohybrids for methanol oxidation were further characterized by cyclic voltammetry and chronoamperometry. Compared with Pt NPs supported on the pristine CNTs, the Pt NPs/CNTs-PDDA catalyst had higher electrochemical surface area and specific mass activity, and better stability towards methanol electro-oxidation.
-
Keywords:
-
Pt nanoparticle
, - Methanol,
- Electrocatalytic oxidation,
- PDDA,
- Carbon nanotube
-
-
-
-
[1]
(1) (a) McGrath, K. M.; Prakash, G. K. S.; Olah, G. A. J. Ind. Eng.Chem. 2004, 10 (7), 1063.
-
[2]
(b) Aricò, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1
-
[3]
(2), 133.
-
[4]
(c) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.;Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95.
-
[5]
(2) (a) Colón-Mercado, H. R.; Kim, H.; Popov, B. N. Electrochem.Commun. 2004, 6 (8), 795. doi: 10.1016/j.elecom.2004.05.028
-
[6]
(b) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B2004, 108 (24), 8234.
-
[7]
(3) (a)Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.;Wang, Z. B.;Gao, Y. Z. J. Power Sources 2007, 171 (2), 331. doi: 10.1016/j.jpowsour.2007.06.084
-
[8]
(b) Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.;Cherepanova, S. V.; Kryukova, G. N.; Stimming, U. J. PowerSources 2005, 145 (2), 178.
-
[9]
(c)Wang, Z. B.; Yin, G. P.; Shi, P. F. Carbon 2006, 44 (1), 133.
-
[10]
(d) Zhao, Y.; E. Y.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H.Electrochim. Acta 2007, 52 (19), 5873.
-
[11]
(e) Xu, Q. J.; Zhou, X. J.; Li, Q. X. Acta Phys. -Chim. Sin. 2010,26 (8), 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26 (8), 2135.] doi: 10.3866/PKU.WHXB20100802
-
[12]
(4) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc.2005, 127 (17), 6146. doi: 10.1021/ja0508828
-
[13]
(5) (a) Hernadi, K.; Siska, A.; Thiên-Nga, L.; Forró, L.; Kiricsi, I.Solid State Ionics 2001, 141-142, 203.
-
[14]
(b) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem.Commun. 2008, 10 (7), 1101.
-
[15]
(c) Xu, H.; Zeng, L. P.; Xing, S. J.; Shi, G. Y.; Xian, Y. Z.; Jin,L. T. Electrochem. Commun. 2008, 10 (12), 1839.
-
[16]
(6) (a)Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19 (26), 265601. doi: 10.1088/0957-4484/19/26/265601
-
[17]
(b)Wang, S. Y.; Jiang, S. P.; White, T. J.; Guo, J.;Wang, X.J. Phys. Chem. C 2009, 113 (43), 18935.
-
[18]
(c) Sanles-Sobrido, M.; Correa-Duarte, M. A.; Carregal-Romero, S.; Rodríguez- nzález, B.; Álvarez-Puebla, R. A.;Hervés, P.; Liz-Marzán, L. M. Chem. Mater. 2009, 21 (8), 1531.
-
[19]
(7) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys.Chem. B 2006, 110 (24), 11775.
-
[20]
(8) (a) Shrestha, S.; Liu, Y.; Mustain,W. E. Catal. Rev. 2011, 53 (3),256. doi: 10.1080/01614940.2011.596430
-
[21]
(b) Shao, Y.; Yin, G.; Gao, Y. J. Power Sources 2007, 171 (2),558.
-
[22]
(9) Colmenares, L. C.;Wurth, A.; Jusys, Z.; Behm, R. J. J. PowerSources 2009, 190 (1), 14.
-
[23]
(10) Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G.P.; Lin, Y. H. ACS Nano 2011, 5 (3), 1785.
-
[24]
(11) (a) He,W.; Zou, L. L.; Zhou, Y.; Lu, X. J.; Li, Y.; Zhang, X. G.;Yang, H. Chem. J. Chin. Univ. 2012, 33 (1), 133. [何卫, 邹亮亮, 周毅, 卢向军, 李媛, 张校刚, 杨辉. 高等学校化学学报, 2012, 33 (1), 133.]
-
[25]
(b) He,W.; Jiang, H. J.; Zhou, Y.; Yang, S. D.; Xue, X. Z.; Zou,Z. Q.; Zhang, X. G.; Akins, D. L.; Yang, H. Carbon 2012, 50 (1), 265.
-
[26]
(c) Shen, X. F.; Chen, Q.; Pang, Y. H.; Cui, Y.; Qian, H. Sci.China Chem. 2011, 41 (7), 1184. 沈晓芳, 陈沁, 庞月红,崔燕, 钱和. 中国科学: 化学, 2011, 41 (7), 1184.]
-
[27]
(d) Qin, X.;Wang, H.;Wang, X.; Miao, Z.; Chen, L.; Zhao,W.;Shan, M.; Chen, Q. Sensors and Actuators B: Chemical 2010,147 (2), 593.
-
[28]
(12) (a) Chakraborty, S.; Raj, C. R. Carbon 2010, 48 (11), 3242. doi: 10.1016/j.carbon.2010.05.014
-
[29]
(b) Yang, D. Q.; Rochette, J. F.; Sacher, E. J. Phys. Chem. B2005, 109 (10), 4481.
-
[30]
(13) Chen, H. J.;Wang, Y. L.;Wang, Y. Z.; Dong, S. J.;Wang, E.Polymer 2006, 47 (2), 763. doi: 10.1016/j.polymer.2005.11.034
-
[31]
(14) Wang, S. Y.; Yu, D. S.; Dai, L. M. J. Am. Chem. Soc. 2011, 133 (14), 5182.
-
[32]
(15) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007,129 (32), 9999.
-
[33]
(16) Li, L.; Xing, Y. J. Electrochem. Soc. 2006, 153 (10), A1823.
-
[34]
(17) (a)Wang, J.; Yin, G.; Shao, Y.;Wang, Z.; Gao, Y. J. PowerSources 2008, 176 (1), 128. doi: 10.1016/j.jpowsour.2007.10.057
-
[35]
(b) Li, L.; Xing, Y. J. Power Sources 2008, 178 (1), 75.
-
[36]
(18) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13.
-
[37]
(19) (a) Leger, J. M.; Lamy, C. Berichte der Bunsengesellschaft fürPhysikalische Chemie 1990, 94 (9), 1021. doi: 10.1002/bbpc.v94:9
-
[38]
(b) Hamnett, A. Catal. Today 1997, 38 (4), 445.
-
[39]
(20) Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. J. Mater. Chem.2009, 19 (42), 7995. doi: 10.1039/b912104h
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[4]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[5]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[8]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[9]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[10]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[11]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[12]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[13]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[14]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[15]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[16]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[17]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[18]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[19]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[20]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[1]
Metrics
- PDF Downloads(660)
- Abstract views(1346)
- HTML views(69)