Citation: ZHANG Bing-Bing, ZHAO Cong, WANG Xue-Song, HE Lei, DU Wei-Hong. Effects of 4-Hydroxyproline Stereochemistry on α-Conotoxin Solution Conformation[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1080-1087. doi: 10.3866/PKU.WHXB201303111 shu

Effects of 4-Hydroxyproline Stereochemistry on α-Conotoxin Solution Conformation

  • Received Date: 8 January 2013
    Available Online: 11 March 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB808503) (973) (2011CB808503) 教育部科技重点项目(108121) (108121)北京化工大学化工资源有效利用国家重点实验室开放课题(CRF-2012-C-102)资助 (CRF-2012-C-102)

  • The hydroxylation of proline is a post-translational modification common in α-conotoxin and other conotoxin families. The 4-hydroxyl group of hydroxyproline adopts a trans conformation in native conotoxin, and this residue plays a key role in toxin structure and bioactivity. Little is known about the effects of the cis conformation of 4-hydroxyproline on conotoxin folding and bioactivity. The solution structures of three chemically modified α-conotoxin species containing cis- and trans-4-hydroxyproline were investigated using two-dimensional nuclear magnetic resonance (2D NMR). The selected α4/ 7-conopeptides included [γ15E]Sr1B, [O7O'/γ15E]Sr1B, and [O6O'/γ14E]Vc1A. The impact of modifying prolines cis/trans-4-hydroxyl group on the conopeptide structure was remarkable. Changing from trans- to cis-4-hydroxyproline led to notable solution conformational changes in α-conopeptide species. These included secondary structure elements, side chain orientations of key residues, and hydrogen-bonding properties. [O7O'/γ15E]Sr1B exhibited a twisted ω structure unlike that of typical α-conotoxin species. [O6O'/γ14E]Vc1A lost the turn structure around the N-/C-termini, which differed from that of Vc1.1. This study aids our understanding of the chemical modification of conotoxin, and is useful in elucidating the structure- bioactivity relationships of α-conotoxin species.

  • 加载中
    1. [1]

      (1) Terlau, H.; Olivera, B. M. Physiol. Rev. 2004, 84, 41. doi: 10.1152/physrev.00020.2003

    2. [2]

      (2) Halai, R.; Craik, D. J. Nat. Prod. Rep. 2009, 26, 526. doi: 10.1039/b819311h

    3. [3]

      (3) Azam, L.; McIntosh, J. M. Acta Pharmacol. Sin. 2009, 30, 771.doi: 10.1038/aps.2009.47

    4. [4]

      (4) Kaas, Q.; Yu, R.; Jin, A. H.; Dutertre, S.; Craik, D. J. NucleicAcids Res. 2012, 40, D325.

    5. [5]

      (5) Livett, B. G.; Sandall, D.W.; Keays, D.; Down, J.; Gayler, K.R.; Satkunanathan, N.; Khalil, Z. Toxicon 2006, 48, 810. doi: 10.1016/j.toxicon.2006.07.023

    6. [6]

      (6) Myers, R. A.; Cruz, L. J.; Rivier, J. E.; Olivera, B. M. Chem.Rev. 1993, 93, 1923. doi: 10.1021/cr00021a013

    7. [7]

      (7) Jin, A. H.; Daly, N. L.; Nevin, S. T.;Wang, C. A.; Dutertre, S.;Lewis, R. J.; Adams, D. J.; Craik, D. J.; Alewood, P. F. J. Med.Chem. 2008, 51, 5575. doi: 10.1021/jm800278k

    8. [8]

      (8) Buczek, O.; Bulaj, G.; Olivera, B. M. Cell Mol. Life Sci. 2005,62, 3067. doi: 10.1007/s00018-005-5283-0

    9. [9]

      (9) Craik, D. J.; Adams, D. J. ACS Chem. Biol. 2007, 2, 457. doi: 10.1021/cb700091j

    10. [10]

      (10) Armishaw, C. J. Toxins 2010, 2, 1471. doi: 10.3390/toxins2061471

    11. [11]

      (11) Clark, R. J.; Jensen, J.; Nevin, S. T.; Callaghan, B. P.; Adams, D.J.; Craik, D. J. Angew. Chem. Int. Edit. 2010, 49, 6545. doi: 10.1002/anie.201000620

    12. [12]

      (12) Muttenthaler, M.; Nevin, S. T.; Grishin, A. A.; N , S. T.; Choy,P. T.; Daly, N. L.; Hu, S. H.; Armishaw, C. J.;Wang, C. I. A.;Lewis, R. J.; Martin, J. L.; Noakes, P. G.; Craik, D. J.; Adams,D. J.; Alewood, P. F. J. Am. Chem. Soc. 2010, 132, 3514. doi: 10.1021/ja910602h

    13. [13]

      (13) Lopez-Vera, E.;Walewska, A.; Skalicky, J. J.; Olivera, B. M.;Bulaj, G. Biochemistry 2008, 47, 1741. doi: 10.1021/bi701934m

    14. [14]

      (14) Xu, J.;Wang, Y. L.; Zhang, B. B.;Wang, B. H.; Du,W. H.Chem. Commun. 2010, 46, 5467. doi: 10.1039/c0cc00075b

    15. [15]

      (15) Calzolari, A.; Cicero, G.; Cavazzoni, C.; Di Felice, R.; Atellani,C. A.; Corni, S. J. Am. Chem. Soc. 2010, 132, 4790. doi: 10.1021/ja909823n

    16. [16]

      (16) Takeda, M.; Jee, J.; Ono, A. M.; Terauchi, T.; Kainosho, M.J. Am. Chem. Soc. 2011, 133, 17420. doi: 10.1021/ja206799v

    17. [17]

      (17) Denning, E. J.; MacKerell, A. D., Jr. J. Am. Chem. Soc. 2012,134, 2800. doi: 10.1021/ja211328g

    18. [18]

      (18) López-Vera, E.; Aguilar, M. B.; Schiavon, E.; Marinzi, C.; Ortiz,E.; Cassulini, R. R.; Batista, C. V. F.; Possani, L. D.; de laCotera, E. P. H.; Peri, F.; Becerril, B.;Wanke, E. FEBS J. 2007,274, 3972. doi: 10.1111/j.1742-4658.2007.05931.x

    19. [19]

      (19) Halai, R.; Clark, R. J.; Nevin, S. T.; Jensen, J. E.; Adams, D. J.;Craik, D. J. J. Biol. Chem. 2009, 284, 20275. doi: 10.1074/jbc.M109.015339

    20. [20]

      (20) Sandall, D.W.; Satkunanathan, N.; Keays, D. A.; Polidano, M.A.; Liping, X.; Pham, V.; Down, J. G.; Khalil, Z.; Livett, B. G.;Gayler, K. R. Biochemistry 2003, 42, 6904. doi: 10.1021/bi034043e

    21. [21]

      (21) Townsend, A.; Livett, B. G.; Bingham, J. P.; Truong, H. T.;Karas, J. A.; O'Donnell, P.;Williamson, N. A.; Purcell, A.W.;Scanlon, D. Inter. J. Pep. Res. Ther. 2009, 15, 195. doi: 10.1007/s10989-009-9173-4

    22. [22]

      (22) Armishaw, C.; Jensen, A. A.; Balle, T.; Clark, R. J.; Harpsøe, K.;Skonberg, C.; Liljefors, T.; Strømgaard, K. J. Biol. Chem. 2009,284, 9498. doi: 10.1074/jbc.M806136200

    23. [23]

      (23) Luo, S.; Nguyen, T. A.; Cartier, G. E.; Olivera, B. M.;Yoshikami, D.; McIntosh, J. M. Biochemistry 1999, 38, 14542.doi: 10.1021/bi991252j

    24. [24]

      (24) Park, K. H.; Suk, J. E.; Jacobsen, R.; Gray,W. R.; McIntosh, J.M.; Han, K. H. J. Biol. Chem. 2001, 276, 49028. doi: 10.1074/jbc.M107798200

    25. [25]

      (25) Clark, R. J.; Fischer, H.; Nevin, S. T.; Adams, D. J.; Craik, D. J.J. Biol. Chem. 2006, 281, 23254. doi: 10.1074/jbc.M604550200

    26. [26]

      (26) Nevin, S. T.; Clark, R. J.; Klimis, H.; Christie, M. J.; Craik, D.J.; Adams, D. J. Mol. Pharmacol. 2007, 72, 1406. doi: 10.1124/mol.107.040568

    27. [27]

      (27) Skjærbæk, N.; Nielsen, K. J.; Lewis, R. J.; Alewood, P. F.;Craik, D. J. J. Biol. Chem. 1997, 272, 2291. doi: 10.1074/jbc.272.4.2291

    28. [28]

      (28) Teichert, R.W.; Jimenez, E. C.; Olivera, B. M. Biochemistry2005, 44, 7897. doi: 10.1021/bi047274+

    29. [29]

      (29) Loughnan, M.; Nicke, A.; Jones, A.; Schroeder, C. I.; Nevin, S.T.; Adams, D. J.; Alewood, P. F.; Lewis, R. J. J. Biol. Chem.2006, 281, 24745. doi: 10.1074/jbc.M603703200

    30. [30]

      (30) Jakubowski, J. A.; Keays, D. A.; Kelley,W. P.; Sandall, D.W.;Bingham, J. P.; Livett, B. G.; Gayler, K. R.; Sweedler, J. V.J. Mass Spectrom. 2004, 39, 548.

    31. [31]

      (31) Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.

    32. [32]

      (32) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. J. Chem.Phys. 1979, 71, 4546. doi: 10.1063/1.438208

    33. [33]

      (33) ddard, T. D.; Kneller, D. G. Sparky 3; University ofCalifornia, San Francisco, CA, 2007.

    34. [34]

      (34) Güntert, P.; Mumenthaler, C.; Wüthrich, K. J. Mol. Biol. 1997,273, 283. doi: 10.1006/jmbi.1997.1284

    35. [35]

      (35) Koradi, R.; Billeter, M.; Wüthrich, K. J. Mol. Graph. 1996, 14,51. doi: 10.1016/0263-7855(96)00009-4

    36. [36]

      (36) Wüthrich, K. NMR of Proteins and Nucleic Acids;Wiley: NewYork, 1986.

    37. [37]

      (37) Huang, F. J.; Du,W. H.;Wang, B. B. Acta Phys.-Chim. Sin.2008, 24, 1558. [黄飞娟, 杜为红, 王保怀. 物理化学学报,2008, 24, 1558.] doi: 10.1016/S1872-1508(08)60064-9

    38. [38]

      (38) Zhang, B. B.; Huang, F. J.; Du,W. H. Amino Acids 2012, 43,389. doi: 10.1007/s00726-011-1093-x

    39. [39]

      (39) Chi, C.W. Chin. Sci. Bull. 2009, 54, 2734. [戚正武. 科学通报, 2009, 54, 2734.] doi: 10.1360/972009-1582

    40. [40]

      (40) Dutertre, S.; Nicke, A.; Lewis, R. J. J. Biol. Chem. 2005, 280,30460. doi: 10.1074/jbc.M504229200

    41. [41]

      (41) Ulens, C.; Hogg, R. C.; Celie, P. H.; Bertrand, D.; Tsetlin, V.;Smit, A. B.; Sixma, T. K. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 3615. doi: 10.1073/pnas.0507889103

    42. [42]

      (42) Quiram, P. A.; Sine, S. M. J. Biol. Chem. 1998, 273, 11007. doi: 10.1074/jbc.273.18.11007

    43. [43]

      (43) Yu, R.; Craik, D. J.; Kaas, Q. PLoS Comput. Biol. 2011, 7,e1002011.


  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    7. [7]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    13. [13]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    14. [14]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    17. [17]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(645)
  • Abstract views(836)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return