Citation: NA Yin-Na, LIU Min, SONG Chun-Shan, GUO Xin-Wen. Effect of Water on Biphenyl Methylation over Modified HZSM-5[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1073-1079. doi: 10.3866/PKU.WHXB201303082 shu

Effect of Water on Biphenyl Methylation over Modified HZSM-5

  • Received Date: 25 December 2012
    Available Online: 8 March 2013

    Fund Project: 新世纪优秀人才(NCET-04-0268) (NCET-04-0268)

  • Nanosized HZSM-5 (n(SiO2)/n(Al2O3)=26) samples were hydrothermally treated with and without subsequent HNO3 leaching. The performance of the samples for the alkylation of biphenyl (BP) with methanol to 4-methylbiphenyl (4-MBP) under fixed-bed down-flow conditions was investigated. Characterization was conducted by the adsorption of pyridine using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis. The effect of water on the catalytic performance of modified HZSM-5 was investigated. Both hydrothermal and combined hydrothermal-HNO3 treatments improved catalytic stability, with the latter exhibiting better stability. Without the addition of water, BP conversion behavior resembled an open down parabolic vs reaction time over modified HZSM-5. However, this change disappeared upon the addition of water to the reaction system. Both catalytic stability and selectivity of 4-MBP were improved upon the addition of water. BP conversion after 30 h on stream was 8.6%, and the selectivity of 4-MBP was as high as about 60%. Elevating the reaction temperature to 500℃ in the presence of water led to increased BP conversion with time on stream up to 30 h, and the selectivity was stable at ~58%. The activity and stability of HZSM-5 were improved, and para selectivity was enhanced with the addition of water.

  • 加载中
    1. [1]

      (1) Song, C.; Schobert, H. H. Fuel Process. Technol. 1993, 34 (2),157. doi: 10.1016/0378-3820(93)90098-O

    2. [2]

      (2) Song, C. S. CATTECH 2002, 6 (2), 64.

    3. [3]

      (3) Brechtelsbauer, C.; Emig, G. Appl. Catal. A-Gen. 1997, 161 (1-2), 79. doi: 10.1016/S0926-860X(96)00382-1

    4. [4]

      (4) Horikawa, Y.; Bulgarevich, D. S.; Uchino, Y.; Shichijo, Y.;Sako, T. In. Eng. Chem. Res. 2005, 44, 2917. doi: 10.1021/ie0493661

    5. [5]

      (5) Yoshiteru, H.; Yuki, U.; Yasuji, S. J. Jpn. Petrol. Inst. 2004, 47 (2), 136. doi: 10.1627/jpi.47.136

    6. [6]

      (6) Guo, X.W.;Wang, X. S.; Shen, J. P.; Song, C. S. Catal. Today2004, 93-95, 411.

    7. [7]

      (7) Guo, X.W.; Shen, J. P.; Sun, L.; Song, C. S.;Wang, X. S. Appl.Catal. A-Gen. 2004, 261 (2), 183. doi: 10.1016/j.apcata.2003.11.001

    8. [8]

      (8) Guo, X.W.; Shen, J. P.; Sun, L.; Song, C. S.;Wang, X. S. Catal.Lett. 2003, 87 (3-4), 159.

    9. [9]

      (9) Guo, X.W.; Shen, J. P.; Sun, L.; Song, C. S.;Wang, X. S. Catal.Lett. 2003, 87 (1-2), 25.

    10. [10]

      (10) Dubuis, S.; Doepper, R.; Renken, A. Methylation of Biphenylover Zeolite H-ZSM-5 in Gas Phase with Methanol in PresenceofWater: Effect of the Catalyst Impregnation by TetraethylOrthosilicate. In Reaction Kinetics and the Development ofCatalytic Processes, Proceedings of the InternationalSymposium, Brugge, Belgium, April 19-21, 1999; Froment, G.F.,Waugh, K. C., Eds.; Elsevier: Amsterdam, 1999; pp 359-366.

    11. [11]

      (11) Sugi, Y.; Tawada, S.; Sugimura, T. Appl. Catal. A-Gen. 1999,189 (2), 251. doi: 10.1016/S0926-860X(99)00282-3

    12. [12]

      (12) Yamamura, M.; Chaki, K.;Wakatsuki, T.; Okado, H.; Fujimoto,K. Zeolites 1994, 14 (8), 643. doi: 10.1016/0144-2449(94)90121-X

    13. [13]

      (13) Sugimoto, M.; Katsuno, H.; Takatsu, K.; Kawata, N. Zeolites1987, 7 (6), 503. doi: 10.1016/0144-2449(87)90087-X

    14. [14]

      (14) Herrmann, C.; Haas, J.; Fetting, F. Appl. Catal. 1987, 35 (2),299. doi: 10.1016/S0166-9834(00)82868-7

    15. [15]

      (15) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020

    16. [16]

      (16) Ding, C. H. Preparation and Catalytic Properties of Catalysts forShape-Selective Alkylation of Toluene with Methanol. Ph. D.Dissertation, Dalian University of Technology, Dalian, 2007.[丁春华. 甲苯/甲醇选择烷基化催化剂的研制和催化性能研究[D]. 大连: 大连理工大学, 2007.]

    17. [17]

      (17) Wang, X. Q.;Wang, X. S.; Guo, X.W. Ultrafine Particles 5 MRType Zeolite. CN Patent 1240193A, 2000-01-05. [王学勤,王祥生, 郭新闻. 超细颗粒五元环型沸石: 中国, CN 1240193A[P], 2000-01-05.]

    18. [18]

      (18) Olah, G. A.; Lapierre, J. C. J. Org. Chem. 1966, 31, 1271.

    19. [19]

      (19) Ding, C.;Wang, X.; Guo, X.; Zhang, S. Catal. Commun. 2008, 9 (4), 487. doi: 10.1016/j.catcom.2007.07.013

    20. [20]

      (20) Zhang, C.; Guo, X.W.; Song, C. S.; Zhao, S. Q.;Wang, X. S.Catal. Today 2010, 149 (1-2), 196. doi: 10.1016/j.cattod.2009.04.015

    21. [21]

      (21) Zhao, L.;Wang, H. B.; Liu, M.; Guo, X.W.;Wang, X. S.; Song,C. S.; Liu, H. M. Chem. Eng. Sci. 2008, 63, 5298. doi: 10.1016/j.ces.2008.07.018

    22. [22]

      (22) Lucas, A.; Canizares, P.; Durán, A. Appl. Catal. A-Gen. 1997,154 (1-2), 221.

    23. [23]

      (23) Schmitz, A. D.; Song, C. S. Catal. Lett. 1996, 40 (1-2), 59. doi: 10.1007/BF00807458

    24. [24]

      (24) Song, C. S. C. R. Acad. Sci. Paris, Série IIc, Chimie Chemistry2000, 3 (6), 477.

    25. [25]

      (25) Lefrancois, M.; Malbois, G. J. Catal. 1971, 20 (3), 350. doi: 10.1016/0021-9517(71)90097-2

    26. [26]

      (26) Cannings, F. R. J. Phys. Chem. 1968, 72 (13), 4691. doi: 10.1021/j100859a058

    27. [27]

      (27) Sauer, J. Science 1996, 271, 774. doi: 10.1126/science.271.5250.774

    28. [28]

      (28) Wang, G. R. Catalyst and Catalytic Action, 1st ed.; DalianUniversity of Technology Press: Dalian, 2000; pp 115-116.[王桂茹. 催化剂与催化作用. 第一版. 大连: 大连理工大学出版社, 2000: 115-116.]


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    12. [12]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    20. [20]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

Metrics
  • PDF Downloads(677)
  • Abstract views(1019)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return