Citation: SUN Hong-Yan, ZHAO Lian-Hua, Yu Feng-Chun. Preparation and Characterization of Pt-Ir-SnO2/C Anode Catalyst for Direct Ethanol Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 959-965. doi: 10.3866/PKU.WHXB201303042 shu

Preparation and Characterization of Pt-Ir-SnO2/C Anode Catalyst for Direct Ethanol Fuel Cell

  • Received Date: 23 November 2012
    Available Online: 4 March 2013

    Fund Project: 吉林省科技发展计划(20120741)资助项目 (20120741)

  • Pt/C, Pt-Ir/C, Pt-SnO2/C, and Pt-Ir-SnO2/C anode electrocatalysts were prepared by an improved Bo? nnemann method. The crystal structure, surface morphology, particle size, and surface electronic structure were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). XRD and TEM revealed that Pt nanoparticles had a face-centered cubic structure, and that dispersions were relatively homogeneous with particle sizes of 2-4 nm. Electrocatalytic activities were characterized using linear sweep voltammetry (LSV), cyclic voltammetry (CV), and amperometric (j-t) curve techniques. Catalytic performance improved with increasing temperature, and catalytic activity of Pt-Ir-SnO2/C was optimal under these conditions. Arrhenius formula calculations showed that the synergy between Ir and Sn reduced the activation energy of Pt-Ir-SnO2/C catalysts for the oxidation of ethanol.

  • 加载中
    1. [1]

      (1) Li, N. N.; Zhang, S. H.; Lei, L. Southern Metals 2009, 169 (4),1. [李娜娜, 张绍红, 雷力. 南方金属, 2009, 169 (4), 1.]

    2. [2]

      (2) Chu, D.;Wang, J.;Wang, S.; Zha, L.; He, J.; Hou, Y.; Yan, Y.;Lin, H.; Tian, Z. Catal. Commun. 2009, 10 (6), 955.doi: 10.1016/j.catcom.2008.12.041

    3. [3]

      (3) Lamy, C.; Belgsir, E. M.; L'eger, J. M. J. Appl. Electrochem.2001, 31 (7), 799. doi: 10.1023/A:1017587310150

    4. [4]

      (4) Antolini, E. J. Power. Sources 2007, 170, 1. doi: 10.1016/j.jpowsour.2007.04.009

    5. [5]

      (5) Li, H. Q.; Sun, G. Q.; Cao, L.; Jiang, L. H.; Xin, Q.Electrochim. Acta 2007, 52, 6622. doi: 10.1016/j.electacta.2007.04.056

    6. [6]

      (6) Tang, Y.W.; Ma, G. X.; Zhou, Y. M.; Bao, J. C.; Lu, L. D.; Lu,T. H. Acta Phys. -Chim. Sin. 2008, 24 (9), 1615. [唐亚文, 马国仙, 周益明, 包建春, 陆路德, 陆天虹. 物理化学学报, 2008, 24 (9), 1615.] doi: 10.3866/PKU.WHXB20080915

    7. [7]

      (7) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S.; Tian, Z.W. ActaPhys. -Chim. Sin. 2006, 22 (9), 1238. [褚道葆, 尹晓娟, 冯德香, 林华水, 田昭武. 物理化学学报, 2006, 22 (9), 1238.]doi: 10.3866/PKU.WHXB20061013

    8. [8]

      (8) Song, S. Q.; Chen, L. K.; Liu, J. G.;Wei, Z. B.; Xin, Q.Electrochemistry 2002, 8 (1), 105. [宋树芹, 陈利康, 刘建国,魏昭彬, 辛勤. 电化学, 2002, 8 (1), 105.]

    9. [9]

      (9) Gao, H. L.; Liao, S. J.; Zeng, J. H.; Liang, Z. X.; Xie, Y. C. ActaPhys. -Chim. Sin. 2010, 26 (12), 3193. [高海丽, 廖世军, 曾建皇, 梁振兴, 谢义淳. 物理化学学报, 2010, 26 (12), 3193.]doi: 10.3866/PKU.WHXB20101214

    10. [10]

      (10) Xu, Z. F.;Wang, Y. X. J. Phys. Chem. C 2011, 115, 20565.doi: 10.1021/jp206051k

    11. [11]

      (11) Jiang, L. H. Research on Anode Electrocatalysts for DirectAlcohol Fuel Cell. Physical. Chemistry. Ph. D. Dissertation,Dalian Institute of Chemical Physics, Chinese Academy ofSciences, Dalian, 2005. [姜鲁华. 直接醇类燃料电池阳极铂基电催化剂的研究[D]. 大连: 中国科学院大连化学物理研究所, 2005.]

    12. [12]

      (12) Corbel, G.; Topic, M.; Gibaud, A.; Lang, C. I. J. Alloy. Compd.2011, 509, 6532. doi: 10.1016/j.jallcom.2011.03.079

    13. [13]

      (13) Jiang, L. H.; Sun, G. Q.; Sun, S. G.; Liu, J. G.; Tang, S. H.; Li,H. Q.; Zhou, B.; Xin, Q. Electrochim. Acta 2005, 50, 5384.doi: 10.1016/j.electacta.2005.03.018

    14. [14]

      (14) Zhou,W. J.; Li,W. Z.; Song, S. Q.; Zhou, Z. H.; Jiang, L. H.;Sun, G. Q. J. Power Sources 2004, 131, 217. doi: 10.1016/j.jpowsour.2003.12.040

    15. [15]

      (15) Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C.J. Electroanal. Chem. 2004, 563, 81. doi: 10.1016/j.jelechem.2003.08.019

    16. [16]

      (16) Takeguchi, T.;Wang, G. X.; Muhamad, E. N.; Ueda,W. ECSTransactions 2008, 16 (2), 713.

    17. [17]

      (17) Li, M.; Kowala, A.; Sasakia, K.; Marinkovicb, N.; Suc, D.;Korachd, E.; Liua, P.; Adzica, R. R. Electrochim. Acta 2010, 55,4331. doi: 10.1016/j.electacta.2009.12.071

    18. [18]

      (18) Tayal, J.; Rawat, B.; Basu, S. Int. J. Hydrog. Energy 2012, 37,4597. doi: 10.1016/j.ijhydene.2011.05.188

    19. [19]

      (19) Zhao, L. H.; Mitsushima, S.; Ishihara, A.; Matsuzawa, K.; Ota,K. Chin. J. Catal. 2011, 32, 1856. doi: 10.1016/S1872-2067(10)60297-5

    20. [20]

      (20) Lee, E.; Park, I. S.; Manthiram, A. J. Phys. Chem. C 2010, 114,10634.

    21. [21]

      (21) Patri'cia, S. C.; Elen, L. S.; Renato, F. S.; Cla'udio, R.; Berta,M.; Eva, C.; Ce'lia, F. M. Int. J. Hydrog. Energy 2012, 37, 9314.doi: 10.1016/j.ijhydene.2012.03.022

    22. [22]

      (22) Lee, E.; Murthy, A.; Manthiram, A. Electrochim. Acta 2011, 56,1611. doi: 10.1016/j.electacta.2010.10.086

    23. [23]

      (23) Cao, L.; Sun, G. Q.; Li, H. Q.; Xin, Q. Electrochem. Commun.2007, 9, 2541. doi: 10.1016/j.elecom.2007.07.031

    24. [24]

      (24) Ioroi, T.; Kitazawa, N.; Yasuda, K.; Yamamoto, Y.; Takeraka, H.J.Electrochem. Soc. 2000, 147, 2018. doi: 10.1149/1.1393478

    25. [25]

      (25) Ioroi, T.; Yasuda, K.; Yamamoto, Y. J. Electrochem. Soc. 2005,152, A1917.

    26. [26]

      (26) Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.;Adzic, R. R. J. Am. Chem. Soc. 2013, 135, 132. doi: 10.1021/ja306384x

    27. [27]

      (27) Bönnemann, H.; Brijoux,W.; Brinkmann, R.; Dinjus, E.;Joussen, T.; Korall, B. Angew. Chem. Int. Edit. 1991, 30, l312.

    28. [28]

      (28) Tayal, J.; Rawat, B.; Basu, S. Int. J. Hydrog. Energy 2011, 36 (22), 14884. doi: 10.1016/j.ijhydene.2011.03.035

    29. [29]

      (29) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995,154, 98. doi: 10.1006/jcat.1995.1151

    30. [30]

      (30) Jiang, L. H.; Zhou, Z. H.; Zhou,W. J.;Wang, S. L.;Wang, G.X.; Sun, G. Q.; Xin, Q. Chem. J. Chin. Univ. 2004, 25, 1511.[姜鲁华, 周振华, 周卫江, 王素力, 汪国雄, 孙公权, 辛勤.高等学校化学学报, 2004, 25, 1511.]

    31. [31]

      (31) Dohle, H.; Divisek, J.; Mergel, J.; Oetien, H. F.; Zingler, C.;Stolten, D. J. Power Source 2002, 105 (2), 274. doi: 10.1016/S0378-7753(01)00953-3

    32. [32]

      (32) Somorjai, G. A. J. Phys. Chem. 1990, 94, 1013. doi: 10.1021/j100366a001

    33. [33]

      (33) Chen G. Y.; Delafuente, D. A.; Sarangapani, S.; Mallouk, T. E.Catal. Today 2001, 67, 341. doi: 10.1016/S0920-5861(01)00327-3

    34. [34]

      (34) Arico, A. S.; Kim, H.; Shukal, A. K.; Ravikumar, M. K.;Antonucci, V.; Giordano, N. Electrochem. Acta 1994, 39 (5),691. doi: 10.1016/0013-4686(94)80012-X

    35. [35]

      (35) Choong, G. L.; Takashi, I.; Mohamed, M. Technological Report2003, 7 (71), 549.

    36. [36]

      (36) Wen, G. Y.; Zhang, Y.; Yang, Z. L.; Li, C. Z. Electrochimistry1998, 4 (1), 73. [文纲要, 张颖, 杨正龙, 李长志. 电化学,1998, 4 (1), 73.]

    37. [37]

      (37) Wang, J. Q.;Wu,W. H.; Feng, D. M. Electron Spectroscopy(XPS/XAES/UPS) Introduction; National Defence IndustryPress: Beijing, 1992; p 53. [王建祺, 吴文辉, 冯大明. 电子能谱学(XPS/XAES/UPS)引论. 北京: 国防工业出版社, 1992:53.]


  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(884)
  • Abstract views(987)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return