Citation: LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 966-972. doi: 10.3866/PKU.WHXB201302281
-
Carbon aerogels have received much recent attention as high-capacity insertion anodes for rechargeable lithium ion batteries. Carbon aerogels were synthesized from resorcinol-formaldehyde with a sodium carbonate catalyst via a sol-gel process, ambient drying, carbonization, and activation. Gaseous CO2-activated carbon aerogels combined the advantages of amorphous and nanoporous structures, with richer porous structures and more lithium insertion points than conventional carbon aerogels. Microporosity analysis indicated a high surface area, and the pore volume effectively retained lithium and its compounds. The mesoporosity allowed the mass transport of Li+ and conferred high ionic conductivity to the electrode. These improvements led to a higher lithium insertion capacity, and the activated carbon aerogel exhibited a specific surface area of 2032 m2·g-1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed an amorphous structure and nanoparticle network skeleton, respectively. Lithium insertion capacities of 3870 and 352 mAh·g-1 were exhibited in the 1st and 50th galvanostatic discharge-charge (50 mA·g-1) cycles, respectively. This corresponded to irreversible capacities of 658 and 333 mAh·g-1, respectively. This work demonstrates the feasibility of CO2 activation for improving lithium insertion performance in carbon aerogels, and provides preparation and optimization procedures for other porous electrode materials.
-
Keywords:
-
Carbon aerogel
, - Sol-gel,
- Gas activation,
- Amorphous carbon,
- Lithium ion battery
-
-
-
[1]
(1) Wild ose, G. G.; Leventis, H. C.; Simm, A. O.; Jones, J. H.;Compton, R. G. Chem. Commun. 2005, 3694.
-
[2]
(2) Tamai, H.; Sumi, T.; Yasuda, H. J. Colloid Interface Sci. 1996,177, 325.
-
[3]
(3) ng, Q.;Wang, H.; Liao, X. Z.; Ma,W.; He, Y. S.; Ma, Z. F.Acta Phys. -Chim. Sin. 2012, 28, 100. [龚强, 王红, 廖小珍, 麻微, 何雨石, 马紫峰. 物理化学学报, 2012, 28, 100.]doi: 10.3866/PKU.WHXB201228100
-
[4]
(4) Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori,H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Angew. Chem.Int. Edit. 2006, 45, 7063.
-
[5]
(5) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221. doi: 10.1007/BF01139044
-
[6]
(6) Kim, H. J.; Kim, J. H.; Kim,W. I.; Suh, D. J. Korean J. Chem.Eng. 2005, 22, 740. doi: 10.1007/BF02705792
-
[7]
(7) Mayer, S. T.; Pekala, R.W.; Kaschmitter, J. L. J. Electrochem.Soc. 1993, 140, 446. doi: 10.1149/1.2221066
-
[8]
(8) Lu, X.; Caps, R.; Fricke, J.; Alviso, C. T.; Pekala, R.W.J. Non-Cryst. Solids 1995, 188, 226. doi: 10.1016/0022-3093(95)00191-3
-
[9]
(9) Probstle, H.; Schmitt, C.; Frick, J. J. Power Sources 2002, 105,189. doi: 10.1016/S0378-7753(01)00938-7
-
[10]
(10) Ping, L. N.; Zheng, J. M.; Shi, Z. Q.;Wang, C. Y. ActaPhys. -Chim. Sin. 2012, 28, 1733. [平丽娜, 郑嘉明, 时志强,王成扬. 物理化学学报, 2012, 28, 1733.] doi: 10.3866/PKU.WHXB201205092
-
[11]
(11) Le, D. B.; Passerini, S.; Guo, J.; Ressler, J.; Owens, B. B.;Smyrl,W. H. J. Electrochem. Soc. 1996, 143, 2099. doi: 10.1149/1.1836965
-
[12]
(12) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim.Sin. 2012, 28, 105. [徐科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
-
[13]
(13) Gao,W. C.; Huang, T.; Shen, Y. D.; Yu, A. S. Acta Phys. -Chim.Sin. 2011, 27, 2129. [高文超, 黄桃, 沈宇栋, 余爱水. 物理化学学报, 2011, 27, 2129.] doi: 10.3866/PKU.WHXB20110933
-
[14]
(14) Slides, C. R.; Li, N. C.; Patrissi, C. J.; Scrosati, B.; Martin, C. R.MRS Bulletin 2002, 8, 604.
-
[15]
(15) Zhang, D.W.; Zhao, Y. B.; odenough, J. B.; Lu, Y. H.; Chen,C. H.;Wang, L.; Liu, J.W. Electrochem. Commun. 2011, 13,125. doi: 10.1016/j.elecom.2010.11.031
-
[16]
(16) Tanaike, O.; Aoike, S.; Ohno, H.; Hatori, H.; Yamada, Y.Materials Science and Engineering B 2008, 148, 237. doi: 10.1016/j.mseb.2007.09.001
-
[17]
(17) Skowronski, J. M.; Knofczynski, K. J. Power Sources 2009,194, 81. doi: 10.1016/j.jpowsour.2009.04.048
-
[18]
(18) Kunowsky, M.; Marco-Lozar, J. P.; Oya, A.; Linares-Solano, A.Carbon 2012, 50, 407.
-
[19]
(19) Liu, H. Y.;Wang, K. P.; Teng, H. S. Carbon 2005, 43, 559. doi: 10.1016/j.carbon.2004.10.020
-
[20]
(20) Liu, N. P.; Shen, J.; Liu, D. Microporous Mesoporous Mat.2013, 167, 176. doi: 10.1016/j.micromeso.2012.09.009
-
[21]
(21) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tram, T. D.; Mayer,S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.doi: 10.1016/S0022-3093(98)00011-8
-
[22]
(22) Xu, J. J.; Yang, J. Electrochem. Commun. 2003, 5, 230. doi: 10.1016/S1388-2481(03)00024-9
-
[23]
(23) Probstle, H.;Wiener, M.; Fricke, J. J. Porous Mater. 2003, 10,213. doi: 10.1023/B:JOPO.0000011381.74052.77
-
[24]
(24) Wu, D. C.; Fu, R.W.; Zhang, S. T.; Dresselhaus, M. S.;Dresselhaus, G. Carbon 2004, 42, 2033. doi: 10.1016/j.carbon.2004.04.003
-
[25]
(25) Wei, Y. Z.; Fang, B.; Iwasa, S.; Kumagai, M. J. Power Sources2005, 141, 386. doi: 10.1016/j.jpowsour.2004.10.001
-
[26]
(26) Antonio, B.; Pico, F.; Rojo, J. M. J. Power Sources 2004, 133,329. doi: 10.1016/j.jpowsour.2004.02.013
-
[27]
(27) Tarazona, P. Surf. Sci. 1995, 331, 989. doi: 10.1016/0039-6028(95)00170-0
-
[28]
(28) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl.Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
-
[29]
(29) Bonino, F.; Brutti, S.; Piana, M.; Natale, S.; Scrosati, B.;Gherghel, L.; Mullen, K. Electrochim. Acta 2006, 51, 3407. doi: 10.1016/j.electacta.2005.09.036
-
[30]
(30) Giraudet, J.; Dubois, M.; Inacio, J.; Hamwi, A. Carbon 2003,41, 453. doi: 10.1016/S0008-6223(02)00341-X
-
[31]
(31) Besenhard, J. O.;Winter, M.; Yang, J.; Biberacher,W. J. PowerSources 1995, 54, 228. doi: 10.1016/0378-7753(94)02073-C
-
[32]
(32) Aurbach, D.; Eineli, Y. J. Electrochem. Soc. 1995, 142, 1746.doi: 10.1149/1.2044188
-
[33]
(33) Aurbach, D.; Markovsky, B.;Weissman, I.; Levi, E.; Ein-Eli, Y.Electrochim. Acta 1999, 45, 67. doi: 10.1016/S0013-4686(99)00194-2
-
[34]
(34) Zoo, G. F.; Zhang, D.W.; Dong, C.; Li, H.; Xiong, K.; Fei, L.F.; Qian, Y. T. Carbon 2006, 44, 2277.
-
[35]
(35) Wu, G. T.;Wang, C. S.; Zhang, X. B.; Yang, H. S.; Qi, Z. F.; He,P. M.; Li,W. Z. J. Electrochem. Soc. 1999, 5, 1696.
-
[36]
(36) Zhao, J.; Gao, Q. Y.; Gu, C.; Yang, Y. Chem. Phys. Lett. 2002,358, 77. doi: 10.1016/S0009-2614(02)00580-8
-
[37]
(37) Yang, Z. H.;Wu, H. Q. Solid State Ionics 2001, 143, 173. doi: 10.1016/S0167-2738(01)00852-9
-
[38]
(38) Flandrois, S.; Simon, B. Carbon 1999, 37, 165. doi: 10.1016/S0008-6223(98)00290-5
-
[39]
(39) Lee, H. Y.; Baek, J. K.; Jang, S.W. J. Power Sources 2001, 101,206. doi: 10.1016/S0378-7753(01)00671-1
-
[1]
-
-
[1]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[2]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[6]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[7]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[10]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[11]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[12]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[13]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[14]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[15]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[16]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[17]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[18]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[19]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[20]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[1]
Metrics
- PDF Downloads(700)
- Abstract views(992)
- HTML views(43)