Citation:
DENG Xu-Li, ZHAO Dong-Mei, DING Zuo-Long, MA Gui-Lin. Dense 5%Al3+-Doped SnP2O7-SnO2 Composite Ceramic for Application in Intermediate Temperature Fuel Cell[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 953-958.
doi:
10.3866/PKU.WHXB201302254
-
Dense non-doped and 5% (molar fraction) Al3+-doped SnP2O7-SnO2 composite ceramics were prepared by reacting non-doped and 5% Al3+-doped SnO2 porous substrates, respectively, with 85% H3PO4 solution at 600℃. The composite ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Their conductivities in the intermediate temperature range of 100-250℃ in wet air and wet H2 atmospheres were measured by electrochemical impedance spectroscopy (EIS). The conductivities of the 5% Al3+-doped SnP2O7-SnO2 composite ceramic were higher than the conductivities of the non-doped SnP2O7-SnO2 composite ceramic and reached 4.30×10-2 S·cm-1 in wet air and 6.25×10-2 S·cm-1 in wet H2 at 250℃. These values are higher than those of the SnP2O7-SnO2 based composite ceramic and SnP2O7-based ceramics under similar conditions. An H2/air fuel cell containing the 5% Al3+-doped SnP2O7-SnO2 composite ceramic as an electrolyte (thickness: 1.45 mm) and porous platinum as electrodes exhibited satisfactory cell performance. The maximum output power densities of this cell were 52.0 mW·cm-2 at 175℃, 61.9 mW·cm-2 at 200℃ and 82.3 mW·cm-2 at 250℃. Such od performance is related to the high conductivity and sufficient density of the composite ceramic electrolyte as well as the low interfacial polarization resistance of the cell.
-
Keywords:
-
SnP2O7
, - Composite ceramic,
- Electrolyte,
- Conductivity,
- Fuel cell
-
-
-
-
[1]
(1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345. doi: 10.1038/35104620
-
[2]
(2) Haile, S. M.; Boysen, D. A.; Chisholm, C. R. I.; Merle, R. B.Nature 2001, 410, 910. doi: 10.1038/35073536
-
[3]
(3) Norby, T. Nature 2001, 410, 877. doi: 10.1038/35073718
-
[4]
(4) Fu, X. Z.; Luo, J. L.; Sanger, A. R.; Luo, N.; Chuang, K. T.J. Power Sources 2010, 195, 2659. doi: 10.1016/j.jpowsour.2009.10.069
-
[5]
(5) Chen, D. J.; Ran, R.; Shao, Z. P. J. Power Sources 2010, 195,4667. doi: 10.1016/j.jpowsour.2010.01.082
-
[6]
(6) Wu, Y. Z.; Dong, D. H.; Ran, R.; Zeng, Y.;Wang, K.; Shao, Z.P.;Wang, H. T. J. Am. Ceram. Soc. 2011, 94, 3666. doi: 10.1111/jace.2011.94.issue-11
-
[7]
(7) Wang, M. Y.; Qiu, L. G.; Ma, G. L. Chin. J. Chem. 2007, 25,1273.
-
[8]
(8) Liu, J.W.; Zhou, D. F.; Yang, M.; Luo, F.; Meng, J. ActaPhys. -Chim. Sin. 2012, 28, 1380. [刘建伟, 周德凤, 杨梅,罗飞, 孟健. 物理化学学报, 2012, 28, 1380.] doi: 10.3866/PKU.WHXB201203304
-
[9]
(9) Iwahara, H.; Asakura, Y.; Katahira, K.; Tanaka, M. Solid StateIonics 2004, 168, 299. doi: 10.1016/j.ssi.2003.03.001
-
[10]
(10) Baker, R. T.; Salar, R.; Potter, A. R.; Metcalfe, I. S.; Sahibzada,M. J. Power Sources 2009, 191, 448. doi: 10.1016/j.jpowsour.2009.02.039
-
[11]
(11) Li, Y. Z.; Kunitake, T.; Aoki, Y.; Muto, E. Adv. Mater. 2008, 20,2398. doi: 10.1002/adma.v20:12
-
[12]
(12) Yang, J. F.; Cheng, J. G.; Fan, Y. M.;Wang, R.; Gao, J. F. ActaPhys. -Chim. Sin. 2012, 28, 95. [杨俊芳, 程继贵, 樊玉萌,王睿, 高建峰. 物理化学学报, 2012, 28, 95.] doi: 10.3866/PKU.WHXB201111161
-
[13]
(13) Wang, H. T.; Liu, J.W.;Wang,W. B.; Ma, G. L. J. PowerSources 2010, 195, 5596. doi: 10.1016/j.jpowsour.2010.03.087
-
[14]
(14) Wang, H. T.; Zhang, H. M.; Xiao, G. X.; Zhang, F.; Yu, T.; Xiao,J.; Ma, G. L. J. Power Sources 2011, 196, 683. doi: 10.1016/j.jpowsour.2010.07.067
-
[15]
(15) Nagao, M.; Kamiya, T.; Heo, P.; Tomita, A.; Hibino, T.; Sano,M. J. Electrochem. Soc. 2006, 153, A1604.
-
[16]
(16) Lan, R.; Tao, S.W. J. Alloy. Compd. 2009, 486, 380. doi: 10.1016/j.jallcom.2009.06.203
-
[17]
(17) Sun, X. F.;Wang, S. R.;Wang, Z. R.; Ye, X. F.;Wen, T. L.;Huang, F. Q. Solid State Ionics 2008, 179, 1138. doi: 10.1016/j.ssi.2008.01.046
-
[18]
(18) Alberti, G.; Casciola, M.; Cavalaglio, S.; Vivani, R. Solid StateIonics 1999, 125, 91. doi: 10.1016/S0167-2738(99)00162-9
-
[19]
(19) Tomita, A.; Kajiyama, N.; Kamiya, T.; Nagao, M.; Hibino, T.J. Electrochem. Soc. 2007, 154, B1265.
-
[20]
(20) Wang, H. T.; Sun, L.; Chen, J. T.; Luo, C. H. Acta Phys. -Chim.Sin. 2012, 28, 2893. [王洪涛, 孙林, 陈继堂, 罗春华. 物理化学学报, 2012, 28, 2893.] doi: 10.3866/PKU.WHXB201210101
-
[21]
(21) Zhang, H. M.; Xiao, J.; Yang, Z. J.;Wang, H. T.; Ma, G. L.Chin. J. Chem. 2012, 30, 1826. doi: 10.1002/cjoc.v30.8
-
[22]
(22) ver, R. K. B.;Withers, N. D.; Allen, S.;Withers, R. L.;Evans, J. S. O. J. Solid State Chem. 2002, 166, 42. doi: 10.1006/jssc.2002.9554
-
[23]
(23) Phadke, S. R.; Bowers, C. R.;Wachsman, E. D.; Nino, J. C.Solid State Ionics 2011, 183, 26. doi: 10.1016/j.ssi.2010.12.011
-
[24]
(24) Xiao, J.; Zhang, H. M.; Yang, Z. J.;Wang, H. T.; Ma, G. L.;Zhou, Z. F. J. Alloy. Compd. 2012, 521, 106. doi: 10.1016/j.jallcom.2012.01.058
-
[25]
(25) Sato, Y.; Shen, Y.; Nishida, M.; Kanematsu,W.; Hibino, T.J. Mater. Chem. 2012, 22, 3973. doi: 10.1039/c2jm15335a
-
[26]
(26) Shen, Y.; Nishida, M.; Kanematsu,W.; Hibino, T. J. Mater.Chem. 2011, 21, 663. doi: 10.1039/c0jm02596h
-
[27]
(27) Wang, H. T.; Zhao, D. M.; Ding, Z. L.; Deng, X. L.; Ma, G. L.J. Power Sources 2013, 222, 467. doi: 10.1016/j.jpowsour.2012.09.001
-
[28]
(28) Wang, H. T.; Xiao, J.; Zhou, Z. F.; Zhang, F.; Zhang, H. M.; Ma,G. L. Solid State Ionics 2010, 181, 1521. doi: 10.1016/j.ssi.2010.08.029
-
[29]
(29) Tao, S.W. Solid State Ionics 2009, 180, 148. doi: 10.1016/j.ssi.2008.11.006
-
[1]
-
-
-
[1]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[2]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[3]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[4]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[5]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[6]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[9]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[10]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[11]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[12]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[13]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[14]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[15]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[16]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[17]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[18]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[19]
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
-
[20]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[1]
Metrics
- PDF Downloads(700)
- Abstract views(789)
- HTML views(0)