Citation: CAI Feng, LIU Wei, FAN Xue-Hua, ZHANG Jing, LU Min-Xu. Electrochemical Corrosion Behavior of X70 Pipeline Steel in Turbulence Zone under Jet Impingement at High Temperature and High Pressure CO2 Environment[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1003-1012. doi: 10.3866/PKU.WHXB201302251
-
The corrosion behavior of X70 pipeline steel in the turbulent zone was investigated in situ with a micro-electrode technique using loop jet impingement under high temperature and high pressure CO2 environment. The morphology of the corrosion product formed on the surface and corrosion behavior of X70 steel after different periods were investigated by scanning electron microscopy and in situ electrochemical methods, respectively. The electrochemical behavior of X70 steel was closely related to the evolution of corrosion scales on the steel surface. The surface of the steel changed gradually from the presence of both substrate and corrosion product to loose, porous corrosion scales during the first 12 h. After 12 h, the corrosion scales were mainly composed of inner and outer scales. Because of the effect of high wall shear stress in the turbulent zone, the porous, less-protective outer scale was thinned and then removed from the steel surface. Consequently, the surface was increasingly covered by the compact inner scale, which decreases the corrosion rate of the steel considerably. Correspondingly, during the first 12 h, the corrosion potential Ecorr and linear polarization resistance Rp of the sample decreased continuously. Meanwhile, electrochemical impedance spectroscopy (EIS) exhibited high- and medium-frequency capacitive loops and a low-frequency inductive loop. Analysis of EIS revealed that the resistance Rf of the corrosion film increased slowly and charge transfer resistance Rt decreased steadily, while the double-layer capacitance Cdl and corrosion film capacitance Cf decreased rapidly. After 12 h, the protectiveness of the corrosion scales improved with time, and thus the Ecorr and Rp increased. As the inductive component weakened with time and finally disappeared at 48 h, EIS changed to double capacitive loops. The Rf, Rr, and Cdl increased quickly. Furthermore, the Cf stabilized.
-
-
[1]
(1) Kermani, M. B.; Morshed, A. B. Corrosion 2003, 59, 659. doi: 10.5006/1.3277596
-
[2]
(2) López, D. A.; Simison, S. N.; de Sánchez, S. R. Electrochim.Acta 2003, 48, 845. doi: 10.1016/S0013-4686(02)00776-4
-
[3]
(3) Nesic, S.; Postlethwaite, J.; Olsen, S. Corrosion 1996, 52, 280.doi: 10.5006/1.3293640
-
[4]
(4) Nesic, S. Corrosion Sci. 2007, 49, 4308. doi: 10.1016/j.corsci.2007.06.006
-
[5]
(5) Song, F. M. Electrochim. Acta 2010, 55, 689. doi: 10.1016/j.electacta.2009.07.087
-
[6]
(6) Zheng, Y. G.; Yao, Z. M.; Ke,W. Corrosion Science andProtection Technology 2000, 12, 36. [郑玉贵, 姚治铭,柯伟. 腐蚀科学与防护技术, 2000, 12, 36.]
-
[7]
(7) Hu, X.; Neville, A. Wear 2009, 267, 2027. doi: 10.1016/j.wear.2009.07.023
-
[8]
(8) Hussain, E. A. M.; Robinson, M. J. Corrosion Sci. 2007, 49,1737. doi: 10.1016/j.corsci.2006.08.023
-
[9]
(9) Efird, K. D.;Wright, E. J.; Boros, J. A.; Hailey, T. G. Corrosion1993, 49, 992. doi: 10.5006/1.3316026
-
[10]
(10) Dube, N. M.; Dube, A.; Veere wda, D. H.; Lyer, S. B. Wear2009, 267, 259. doi: 10.1016/j.wear.2009.02.013
-
[11]
(11) Zhang, G. A.; Cheng, Y. F. Corrosion Sci. 2010, 52, 2716. doi: 10.1016/j.corsci.2010.04.029
-
[12]
(12) Wu, X. Q.; Jing, H. M.; Zheng, Y. G.; Yao, Z. M.; Ke,W.Journal of Chinese Society for Corrosion and Protection 2002,22, 1. [吴欣强, 敬和民, 郑玉贵, 姚治铭, 柯伟. 中国腐蚀与防护学报, 2002, 22, 1.]
-
[13]
(13) Wu, X. Q.; Jing, H. M.; Zheng, Y. G.; Yao, Z. M.; Ke,W. Wear2004, 256, 133. doi: 10.1016/S0043-1648(03)00370-3
-
[14]
(14) Tahara, A.; Shinohara, T. Corrosion Sci. 2005, 47, 2589. doi: 10.1016/j.corsci.2004.10.019
-
[15]
(15) Hu, B.; Peng, L. M.; Ding,W. J. Tribology 2010, 30, 537.[胡斌, 彭立明, 丁文江. 摩擦学学报, 2010, 30, 537.]
-
[16]
(16) Zhang, G. A.; Lu, M. X.;Wu, Y. S. Chinese Journal ofMaterials Research 2005, 19, 537. [张国安, 路民旭, 吴荫顺.材料研究学报, 2005, 19, 537.]
-
[17]
(17) Gao, M.; Pang, X.; Gao, K. Corrosion Sci. 2011, 53, 557. doi: 10.1016/j.corsci.2010.09.060
-
[18]
(18) Heitz, E. Corrosion 1991, 47, 135. doi: 10.5006/1.3585229
-
[19]
(19) Poulson, B.; Robinson, R. Corrosion Sci. 1986, 26, 265. doi: 10.1016/0010-938X(86)90048-X
-
[20]
(20) Poulson, B. Corrosion Sci. 1993, 35, 655. doi: 10.1016/0010-938X(93)90201-Q
-
[21]
(21) Starn, M.; Geary, A. L. J. Electrochem. Soc. 1957, 104, 56.
-
[22]
(22) Xu, L. Y.; Cheng, Y. F. Corrosion Sci. 2009, 51, 2330. doi: 10.1016/j.corsci.2009.06.005
-
[23]
(23) Zou, Y.;Wang, J.; Zheng, Y. Y. Acta Phys. -Chim. Sin. 2010, 26,2361. [邹妍, 王佳, 郑莹莹. 物理化学学报, 2010, 26,2361.] doi: 10.3866/PKU.WHXB20100825
-
[24]
(24) Miranda, E.; Bethencourt, M.; Botana, F. J.; Cano, M. J.;Sánchez-Amaya, J. M.; Corzo, A.; Carcía de Lomas, J.;Faradean, M. L.; Ollivier, B. Corrosion Sci. 2006, 48, 2417.doi: 10.1016/j.corsci.2005.09.005
-
[25]
(25) Liu,W.; Zhao, Y. L.; Lu, M. X. Acta Phys. -Chim. Sin. 2008, 24,393. [柳伟, 赵艳亮, 路民旭. 物理化学学报, 2008, 24,393.] doi: 10.3866/PKU.WHXB20080307
-
[1]
-
-
[1]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[2]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[3]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[4]
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
-
[5]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[8]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[9]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[10]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[11]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[12]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[13]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[14]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[15]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[16]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[17]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[18]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[19]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[20]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[1]
Metrics
- PDF Downloads(614)
- Abstract views(787)
- HTML views(8)