Citation: CAI Hong-Min, REN Su-Zhen, WANG Meng, JIA Cui-Ying. Preparation and Properties of Monodisperse SnO2 Hollow Micro/Nano Spheres[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201302051 shu

Preparation and Properties of Monodisperse SnO2 Hollow Micro/Nano Spheres

  • Received Date: 26 November 2012
    Available Online: 5 February 2013

    Fund Project: 国家自然科学基金(21176043)资助项目 (21176043)

  • Templating is one of the most important methods for preparation of inorganic hollow micro/ nano spheres. We prepared monodisperse polystyrene (PS) microspheres having a diameter of 620 nm by the emulsion polymerization of styrene. Sulfonated polystyrene (PSS) microspheres were used as a template, through electrostatic adsorption of anions and cations, for modification with Sn2+ from SnSO4 precursor. The core-shell composite structures thereby produced through Sn2+ hydrolysis in an ethanolwater medium were calcined at high temperature to remove PSS and to obtain SnO2 hollow micro/nano spheres. We investigated the effects of precursor concentration, amount of surfactant, reaction time, and templates choice. Scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TGA), H2 temperature programmed reduction (H2-TPR), Brunauer-Emmett-Teller (BET) measurement, and other technical probes were used to detect the structure and properties of the prepared SnO2 hollow micro/nano spheres, and compared them with those of solid SnO2. BET and H2-TPR showed that the hollow SnO2 micro/nano spheres had improved specific surface area, surface oxygen vacancies, and oxidation activity. We inferred the growth mechanism of the core-shell structure from IR spectroscopy and XRD pattern and optimized the simple and reasonable synthesis procedure to obtain SnO2 hollow micro/nano spheres which had smooth surface, compact structure, and well controlled cladding thickness.

  • 加载中
    1. [1]

      (1) (a) Zhu, Y.; Shi, J.; Shen,W.; Dong, X.; Feng, J.; Ruan, M.; Li,Y. Angew. Chem. 2005, 117 (32), 5213.

    2. [2]

      (b) Zhu, Y.; Shi, J.; Shen,W.; Dong, X.; Feng, J.; Ruan, M.; Li,Y. Angew. Chem. Int. Edit. 2005, 44, 5083.

    3. [3]

      (2) Zhang,W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.;Song,W. G.;Wan, L. J. Adv. Mater. 2008, 20 (6), 1160. doi: 10.1002/adma.v20:6

    4. [4]

      (3) Cai,W. Q.; Yu, J. G.; Cheng, B.; Su, B. L.; Jaroniec, M. J. Phys.Chem. C 2009, 113, 14739. doi: 10.1021/jp904570z

    5. [5]

      (4) Yu, K.;Wu, Z.; Zhao, Q.; Li, B.; Xie, Y. J. Phys. Chem. C 2008,112 (7), 2244. doi: 10.1021/jp711880e

    6. [6]

      (5) Wu, P.; Du, N.; Zhang, H.; Zhai, C. X.; Yang, D. R. ACS Appl.Mater. Interfaces 2011, 3, 1946. doi: 10.1021/am200168w

    7. [7]

      (6) Zheng, L. R.; Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.;Zheng, Q.;Wei, K. M.; Zhu, J. F. Inorg. Chem. 2009, 48, 1819.doi: 10.1021/ic802293p

    8. [8]

      (7) Li,W. B.; Bu, Y. Y.; Yu, J. Q. Acta Phys. -Chim. Sin. 2012, 28 (11), 2676. [李卫兵, 补钰煜, 于建强. 物理化学学报, 2012,28 (11), 2676.] doi: 10.3866/PKU.WHXB201207101

    9. [9]

      (8) Rao, G. S.; Cheng, M. Q.; Zhong, Y.; Deng, X. C.; Yi, F.; Chen,Z. R.; Zhong, Q. L.; Fan, F. R.; Ren, B.; Tian, Z. Q. ActaPhys. -Chim. Sin. 2011, 27 (10), 2373. [饶贵仕, 程美琴,钟艳, 邓小聪, 易飞, 陈治仁, 钟起玲, 范凤茹, 任斌,田中群. 物理化学学报, 2011, 27 (10), 2373.] doi: 10.3866/PKU.WHXB20111008

    10. [10]

      (9) Xiao, L. F.; Li, J. P.; Li, Q.; Zhang, L. Z. J. Solid State Electr.2010, 14, 931.

    11. [11]

      (10) Zhao, Q.; Xie, Y.; Dong, T.; Zhang, Z. J. Phys. Chem. C 2007,111 (31), 11598. doi: 10.1021/jp072858h

    12. [12]

      (11) Liu, J.; Zhang, L.; Shi, S.; Chen, S.; Zhou, N.; Zhang, Z.;Cheng, Z.; Zhu, X. Langmuir 2010, 26 (18), 14806. doi: 10.1021/la102994g

    13. [13]

      (12) Kobayashi, Y.; Salgueirino-Maceira, V.; Liz-Marzan, L. M.Chem. Mater. 2001, 13 (5), 1630. doi: 10.1021/cm001240g

    14. [14]

      (13) Liu, R.; Yang, S.;Wang, F.; Lu, X.; Yang, Z.; Ding, B. ACSAppl. Mater. Interfaces 2012, 4, 1537. doi: 10.1021/am201756m

    15. [15]

      (14) Tierno, P.; edel,W. A. J. Phys. Chem. B 2006, 110 (7), 3043.doi: 10.1021/jp054213s

    16. [16]

      (15) Chen, M.;Wu, L.; Zhou, S.; You, B. Adv. Mater. 2006, 18 (6),801.

    17. [17]

      (16) Jang, I.; Sung, J.; Choi, H.; Chin, I. Synth. Met. 2005, 152 (1-3), 9. doi: 10.1016/j.synthmet.2005.07.087

    18. [18]

      (17) Li, M.; Lu, Q.; Nuli, Y.; Qian, X. Electrochem. Solid-State Lett.2007, 10 (8), K33.

    19. [19]

      (18) Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Chem. Mater.1999, 11 (3), 795. doi: 10.1021/cm980666g

    20. [20]

      (19) (a) Yang, Z.; Niu, Z.; Lu, Y.; Hu, Z.; Han, C. C. Angew. Chem.Int. Edit. 2003, 42, 1943. doi: 10.1002/anie.200250443

    21. [21]

      (b) Yang, Z.; Niu, Z.; Lu, Y.; Hu, Z.; Han, C. C. Angew. Chem.2003, 115 (17), 1987.

    22. [22]

      (20) Cai, J. Y.; Lü, S.; Sun,W. D. J. Northeast Norm. Univ., Nat. Sci.Ed. 2009, 41 (2), 135. [蔡建岩, 吕卅, 孙闻东. 东北师大学报: 自然科学版, 2009, 41 (2), 135.]

    23. [23]

      (21) (a) Yoon, K.; Yang, Y.; Lu, P.;Wan, D. H.; Peng, H. C.; Masias,K. S.; Fanson, P. T.; Campbell, C. T.; Xia, Y. N. Angew. Chem.2012, 124 (38), 9681. doi: 10.1002/ange.v124.38

    24. [24]

      (b) Yoon, K.; Yang, Y.; Lu, P.;Wan, D. H.; Peng, H. C.; Masias,K. S.; Fanson, P. T.; Campbell, C. T.; Xia, Y. N. Angew. Chem.Int. Edit. 2012, 51, 9543.

    25. [25]

      (22) Huang, Y.; Li, M. Materials Review 2006, 20 (10), 143.[黄怡, 李梅. 材料导报, 2006, 20 (10), 143.]

    26. [26]

      (23) Li, G.; Xi, S. P.; Liu, Z. X.; Huang, Y. E. Spectroscopy andSpectral Analysis 1999, 19 (3), 289. [李谷, 席世平, 刘振兴, 黄月娥. 光谱学与光谱分析, 1999, 19 (3), 289.]

    27. [27]

      (24) Shi, L.; Lin, H. Langmuir 2010, 26 (24), 18718. doi: 10.1021/la103769d

    28. [28]

      (25) Zhao, H. Y.; Zhao, Z. Z.; Zhao, Y. F.; Liu, Q. J. Chin. J. Catal.2010, 31 (1), 44. [赵鹤云, 赵忠泽, 赵义芬, 柳清菊. 催化学报, 2010, 31 (1), 44.]


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230369

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109262

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240170

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240078

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240047

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, doi: 10.3866/PKU.DXHX202310102

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230293

    16. [16]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, doi: 10.12461/PKU.DXHX202403105

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, doi: 10.3866/PKU.DXHX202311035

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(822)
  • Abstract views(1082)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return