Citation:
WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang. Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201302043
-
The selective oxidation of styrene on oxygen-covered Ag(110) and Ag(111) surfaces is studied by density functional theory (DFT) calculations with the periodic slab model. On the Ag(110) surface, a pre-adsorbed oxygen atom prefers the 3-fold hollow site (3h) with an adsorption energy of -3.59 eV. On the Ag(111) surface, the most stable adsorption site for a pre-adsorbed oxygen atom is the fcc site, and the adsorption energy is -3.69 eV. The reaction process of the selective oxidation of styrene includes two steps: the formation of surface intermediates (branched oxametallacycle and linear oxametallacycle) and the subsequent formation of different products. The calculated results show that the formation of styrene oxide via the linear oxametallacycle (i.e., the pre-adsorbed atomic oxygen bound to the methylene group in styrene) is the favorable reaction mechanism on both Ag(110) and Ag(111) surfaces. The reaction barriers for the different reaction steps of styrene epoxidation on the Ag(110) surface are generally higher than those on the Ag(111) surface. Moreover, the micro-kinetic simulation results indicate that the relative selectivity towards the formation of styrene oxide on the Ag(111) surface is much higher than that on the Ag(110) surface (0.38 vs 0.003) because the energy barrier for the styrene epoxidation is smaller than that for the formation of phenyl acetaldehyde and its combustion intermediate on Ag(111) surface. The reverse trends occurred on the Ag(110) surface.
-
-
-
[1]
(1) Barteau, M. A. Surf. Sci. 2006, 600, 5021. doi: 10.1016/j.susc.2006.09.024
-
[2]
(2) Klust, A.; Madix, R. J. Surf. Sci. 2006, 600, 5025. doi: 10.1016/j.susc.2006.08.049
-
[3]
(3) Serafin, J. G.; Liu, A. C.; Seyedmonir, S. R. J. Mol. Catal. A:Chem. 1998, 131, 157. doi: 10.1016/S1381-1169(97)00263-X
-
[4]
(4) Bocquet, M. L.; Sautet, P.; Cerda, J.; Carlisle, C. I.;Webb, M. J.;King, D. A. J. Am. Chem. Soc. 2003, 125, 3119. doi: 10.1021/ja027634l
-
[5]
(5) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2002, 124, 310. doi: 10.1021/ja0118136
-
[6]
(6) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2003, 125, 4034.doi: 10.1021/ja029076g
-
[7]
(7) Park, D. M.; Ghazali, S.; Gau, G. Appl. Catal. 1983, 6 (2), 175.doi: 10.1016/0166-9834(83)80263-2
-
[8]
(8) Zhou, L.; Madix, R. J. Surf. Sci. 2009, 603, 1751. doi: 10.1016/j.susc.2008.08.032
-
[9]
(9) Bocquet, M. L.; Loffreda, D. J. Am. Chem. Soc. 2005, 127,17207. doi: 10.1021/ja051397f
-
[10]
(10) Linic, S.; Piao, H.; Adib, K.; Barteau, M. A. Angew. Chem. Int.Edit. 2004, 43, 2918.
-
[11]
(11) Christopher, P.; Linic, S. J. Am. Chem. Soc. 2008, 130, 11264.doi: 10.1021/ja803818k
-
[12]
(12) Chen, H. T.; Chang, J. G.; Ju, S. P.; Chen, H. L. J. Phys. Chem.Lett. 2010, 1, 739. doi: 10.1021/jz900469f
-
[13]
(13) Barteau, M. A.; Madix, R. J. Surf. Sci. 1981, 103 (2-3), L171.
-
[14]
(14) Roberts, J. T.; Madix, R. J. J. Am. Chem. Soc. 1988, 110, 8540.doi: 10.1021/ja00233a038
-
[15]
(15) Lambert, R. M.;Williams, F. J.; Cropley, R. L.; Palermo, A.J. Mol. Catal. A: Chem. 2005, 228 (1-2), 27. doi: 10.1016/j.molcata.2004.09.077
-
[16]
(16) Hawker, S.; Mukoid, C.; Badyal, J. P. S.; Lambert, R. M. Surf.Sci. Lett. 1989, 219 (3), L615.
-
[17]
(17) Williams, F. J.; Bird, D. P. C.; Palermo, A.; Santra, A. K.;Lambert, R. M. J. Am. Chem. Soc. 2004, 126, 8509. doi: 10.1021/ja039378y
-
[18]
(18) Klust, A.; Madix, R. J. J. Am. Chem. Soc. 2006, 128, 1034. doi: 10.1021/ja054845s
-
[19]
(19) Liu, X. Y.; Klust, A.; Madix, R. J.; Friend, C. M. J. Phys. Chem.C 2007, 111, 3675. doi: 10.1021/jp066560n
-
[20]
(20) Zhou, L.; Madix, R. J. J. Phys. Chem. C 2008, 112, 4725. doi: 10.1021/jp7119558
-
[21]
(21) Mukoid, C.; Hawker, S.; Badyal, J. P. S.; Lambert, R. M. Catal.Lett. 1990, 4 (1), 57. doi: 10.1007/BF00764871
-
[22]
(22) Deng, X. Y.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.doi: 10.1021/ja0557031
-
[23]
(23) Quiller, R. G.; Liu, X. Y.; Friend, C. M. Chemistry-An AsianJournal 2010, 5 (1), 78. doi: 10.1002/asia.v5:1
-
[24]
(24) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[25]
(25) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[26]
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[27]
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[28]
(28) Blouml, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[29]
(29) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys.2000, 113, 9901. doi: 10.1063/1.1329672
-
[30]
(30) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[31]
(31) Li,W. X.; Stampfl, C.; Scheffler, M. Phys. Rev. B 2002, 65,075407. doi: 10.1103/PhysRevB.65.075407
-
[32]
(32) Shi, H. Q.; Stampfl, C. Phys. Rev. B 2007, 76, 075327. doi: 10.1103/PhysRevB.76.075327
-
[33]
(33) Bocquet, M. L.; Michaelides, A.; Loffreda, D.; Sautet, P.; Alavi,A.; King, D. A. J. Am. Chem. Soc. 2003, 125, 5620. doi: 10.1021/ja0297741
-
[34]
(34) Pang, X. Y.; Xing, B.; Xue, L. Q.;Wang, G. C. J. Comput.Chem. 2010, 31, 1618.
-
[35]
(35) Xue, L. Q.; Pang, X. Y.;Wang, G. C. J. Comput. Chem. 2009,30, 438. doi: 10.1002/jcc.v30:3
-
[36]
(36) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. J. Am. Chem.Soc. 2005, 127, 10774. doi: 10.1021/ja043227t
-
[37]
(37) Torres, D.; Lopez, N.; Illas, F. J. Catal. 2006, 243 (2), 404. doi: 10.1016/j.jcat.2006.08.011
-
[38]
(38) Lukaski, A. C.; Enever, M. C. N.; Barteau, M. A. Surf. Sci.2007, 601, 3372. doi: 10.1016/j.susc.2007.06.015
-
[39]
(39) Toni ld, K.; Gross, A. J. Chem. Phys. 2010, 132, 224701. doi: 10.1063/1.3439691
-
[40]
(40) Grimme, S. J. Comput. Chem. 2006, 27, 1787.
-
[41]
(41) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.2010, 132, 154104. doi: 10.1063/1.3382344
-
[42]
(42) Benco, L.; Bucko, T.; Hafner, J. J. Catal. 2011, 277, 104.
-
[43]
(43) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem.Int. Edit. 2007, 46, 2055.
-
[44]
(44) Wang, H. F.; Liu, Z. P. J. Am. Chem. Soc. 2008, 130, 10996.
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240210
-
[2]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, doi: 10.3866/PKU.DXHX202309018
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309101
-
[4]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, -
[5]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, doi: 10.12461/PKU.DXHX202406003
-
[6]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, doi: 10.12461/PKU.DXHX202405166
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, doi: 10.3866/PKU.DXHX202312002
-
[8]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, doi: 10.3866/PKU.DXHX202312014
-
[9]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037
-
[11]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240302
-
[12]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406020
-
[13]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230317
-
[14]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, doi: 10.12461/PKU.DXHX202405098
-
[15]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, doi: 10.12461/PKU.DXHX202403044
-
[16]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240028
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406029
-
[18]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240201
-
[19]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240393
-
[20]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240409
-
[1]
Metrics
- PDF Downloads(642)
- Abstract views(946)
- HTML views(3)