Citation: LI Song, CHEN Shan-Jun, ZHU De-Sheng, WEI Jian-Jun. Structure and Potential Energy Function of ClF- Molecular Ion[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201301311 shu

Structure and Potential Energy Function of ClF- Molecular Ion

  • Received Date: 6 November 2012
    Available Online: 31 January 2013

    Fund Project: 湖北省高等学校优秀中青年科技创新团队计划项目(T201204) (T201204) 湖北省教育厅优秀中青年人才项目(Q20091215) (Q20091215)

  • The molecular structure of the ground electronic state (X2Σ+) of 35ClF- and 37ClF- molecular ions have been calculated using single and double substitution quadratic configuration interaction calculations with the triple contribution [QCISD(T)] method and the simple and double excitation coupled-cluster theory with noniterative treatment with the triple excitations [CCSD(T)] method in combination with the correlation consistent basis sets aug-cc-pVXZ (X=D, T, Q, 5). Basis set extrapolation procedures were employed to estimate the complete basis set limit using results obtained with the CCSD(T) method. The analytical potential energy curves for the ground state of the systems were determined by fitting the data of single point energy scans that were calculated at the CCSD(T)/aug-cc-pVXZ (X=D, T, Q, 5) level of theory. The obtained potential energy curves correctly described the configuration and dissociation energy of the molecular ion and was well reproduced by the Murrell-Sorbie function. The corresponding spectroscopic parameters for the ground states of 35ClF- and 37ClF- molecular ions were also deduced. Parallel computations were carried out for the neutral ClF radical on the same level of theory. The results were in od agreement with available experimental data. The consistency between our results and previously reported experimentally determined values demonstrated the feasibility of the theoretical approach performed in this work. The optimized equilibrium geometric parameters were further used to derive the electron affinities of the neutral ClF radical. The vertical detachment energy of ClF- was also determined. Based on computation results for ClF-, the vibrational levels and corresponding molecular constants for the X2Σ+ states of 35ClF- and 37ClF- molecular ions were obtained by solving the radical Schr?dinger equation of the nuclear motion.

  • 加载中
    1. [1]

      (1) Chen, H. J.; Tang, H. Y.; Cheng, X. L.;Wang, Q.W. ActaPhys. -Chim. Sin. 2010, 26, 740. [陈恒杰, 唐海燕, 程新路,王全武. 物理化学学报, 2010, 26, 740.] doi: 10.3866/PKU.WHXB20100240

    2. [2]

      (2) Wang, R.; Jiang, G.; Meng, D. Q.; Zhu, Z. H. Acta Phys. -Chim.Sin. 2009, 25, 1103. [王蓉, 蒋刚, 蒙大桥, 朱正和. 物理化学学报, 2009, 25, 1103.] doi: 10.3866/PKU.WHXB20090617

    3. [3]

      (3) Xu, Y. Q.; Gao, X. M.; Zhang,W. J. Acta Phys. -Chim. Sin.2007, 23, 1075. [许永强, 高晓明, 张为俊. 物理化学学报,2007, 23, 1075.] doi: 10.3866/PKU.WHXB20070721

    4. [4]

      (4) Zhang, Y. G.; Gao, T.; Li, G. X.; Zhang, C. Y.; Chen, D.; Zhu, Z.H. Acta Phys. -Chim. Sin. 2006, 22, 780. [张云光, 高涛, 李桂霞, 张传瑜, 陈东, 朱正和. 物理化学学报, 2006, 22, 780.]doi: 10.3866/PKU.WHXB20060703

    5. [5]

      (5) Li, S.; Han, L. B.; Zhou, Z. L. Density Functional Study ofPotential Energy Function of Sulfur Monoxide. Proceedings of2012 International Conference on Computer Science andMathematics, Physical Education and Management,Wuahn,Chian, Sept. 20-21, 2012; Zou, T. R., Han, H. Y., Eds.; IEEEPress: Beijing, China, 2012.

    6. [6]

      (6) Wilkins, J.W.; Gabriel, J. R. Phys. Rev. 1963, 132, 1950. doi: 10.1103/PhysRev.132.1950

    7. [7]

      (7) Schoemaker, D. Phys. Rev. 1966, 149, 693. doi: 10.1103/PhysRev.149.693

    8. [8]

      (8) Susman, S. Phys. Stat. Sol. B 1970, 37, 561.

    9. [9]

      (9) Griscom, D. L.; Friebele, E. J. Phys. Rev. B 1991, 43, 7427. doi: 10.1103/PhysRevB.43.7427

    10. [10]

      (10) Delbecq, C. J.; Hutchinson, E.; Yuster, P. H. J. Chem. Phys.1983, 79, 1408. doi: 10.1063/1.445900

    11. [11]

      (11) Van Huis, T. J.; Galbraith, J. M.; Schaefer, H. F., III. Mol. Phys.1996, 89, 607.

    12. [12]

      (12) Bruna. P. J.; Greinr, F. Chem. Phys. Lett. 2000, 318, 263. doi: 10.1016/S0009-2614(00)00022-1

    13. [13]

      (13) Midda, S.; Das, A. K. J. Mol. Struct. -Theochem 2005, 713, 101.doi: 10.1016/j.theochem.2004.09.047

    14. [14]

      (14) Zhu, Z. H. Atomic and Molecular Reaction Statics; SciencePress: Beijing, 1996. [朱正和. 原子分子反应静力学. 北京:科学出版社, 1996.]

    15. [15]

      (15) Pople, J. A.; Head- rdon, M.; Raghavachari, K. J. Chem.Phys. 1987, 87, 5968. doi: 10.1063/1.453520

    16. [16]

      (16) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M.Chem. Phys. Lett. 1989, 157, 479.

    17. [17]

      (17) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153

    18. [18]

      (18) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem.Phys. 1992, 96, 6796. doi: 10.1063/1.462569

    19. [19]

      (19) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303

    20. [20]

      (20) Peterson, K. A.;Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys.1994, 100, 7410. doi: 10.1063/1.466884

    21. [21]

      (21) Helgaker, T.; Klopper,W.; Koch, H.; Noga, J. J. Chem. Phys.1997, 106, 9639. doi: 10.1063/1.473863

    22. [22]

      (22) Feller, D. J. Chem. Phys. 1992, 96, 6104.

    23. [23]

      (23) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669. doi: 10.1016/0009-2614(96)00898-6

    24. [24]

      (24) Dixon, D. A.; de Jong,W. A.; Peterson, K. A.; McMahon, T. B.J. Phys. Chem. A 2005, 109, 4073. doi: 10.1021/jp044561e

    25. [25]

      (25) Feller, D.; Peterson, K. A.; Crawford, T. D. J. Chem. Phys.2006, 124, 054107. doi: 10.1063/1.2137323

    26. [26]

      (26) Feller, D.; Peterson, K. A. J. Chem. Phys. 2007, 126, 114105.doi: 10.1063/1.2464112

    27. [27]

      (27) Balabanov, N. B.; Peterson, K. A. J. Phys. Chem. A 2003, 107,7465. doi: 10.1021/jp035547p

    28. [28]

      (28) Murrell, J. N.; Sorbie, K. S. J. Chem. Soc. Faraday Trans. 21974, 70, 1552. doi: 10.1039/f29747001552

    29. [29]

      (29) Zhu, Z. H.; Yu, H. G. Molecular Structure and MolecularPotential Energy Function; Science Press: Beijing, 1997.[朱正和, 俞华根. 分子结构与分子势能函数. 北京: 科学出版社, 1997.]

    30. [30]

      (30) Le Roy, R. J. Level 8.0: A Computer Program for Solving theRadial Schrödinger Equation for Bound and QuasiboundLevels, University ofWaterloo Chemical Physics ResearchReport CP-663; see http://leroy.uwaterloo.ca/programs.

    31. [31]

      (31) Huber, K. P.; Herzberg, G. Molecular Spectra and MolecularStructure. IV. Constants of Diatomic Molecules; Van NostrandReinhold Company: New York, 1979.

    32. [32]

      (32) Wang, X. Q.; Yang, C. L.; Su, T.;Wang, M. S. Acta Phys. Sin.2009, 58, 6873. [王新强, 杨传路, 苏涛, 王美山. 物理学报, 2009, 58, 6873.]

    33. [33]

      (33) Shi, D. H.; Zhang, J. P.; Sun, J. F.; Liu, Y. F.; Zhu, Z. L. ActaPhys. Sin. 2009, 58, 5329. [施德恒, 张金平, 孙金锋, 刘玉芳,朱遵略. 物理学报, 2009, 58, 5329.]

    34. [34]

      (34) Chen, L.;Woon, D. E.; Dunning, T. H., Jr. J. Phys. Chem. A2009, 113, 12645. doi: 10.1021/jp905064v

    35. [35]

      (35) Bürger, H.; Schulz, P.; Jacob, E.; Fähnle, M. Z. Naturforsch. TeilA 1986, 41A, 1015.


  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, doi: 10.3866/PKU.DXHX202401086

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, doi: 10.3866/PKU.DXHX202312049

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202403032

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, doi: 10.12461/PKU.DXHX202403054

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, doi: 10.12461/PKU.DXHX202404105

    20. [20]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057

Metrics
  • PDF Downloads(649)
  • Abstract views(1084)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return