Citation: LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1055-1062. doi: 10.3866/PKU.WHXB201301181 shu

Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts

  • Received Date: 31 October 2012
    Available Online: 18 January 2013

    Fund Project: 国家自然科学基金(21173195)资助项目 (21173195)

  • A series of Pt/TiO2 catalysts were prepared using a deposition-precipitation method and calcined at different temperatures to obtain various Pt particle sizes. The catalysts were tested for catalytic CO oxidation and the kinetics of the reaction was studied. The results showed that the Pt particle size increased with calcination temperature, and that their reactivity for CO oxidation first increased and then decreased with increasing calcination temperature, with the catalyst calcined at 400℃ possessing the highest reactivity. The kinetic investigation revealed that the reaction rate could be described by r=5.4×10-7p CO0.17pO20.36, suggesting that the reaction followed a Langmuir-Hinshelwood mechanism. Meanwhile, O2 chemisorption and infrared (IR) spectroscopy of CO chemisorption on the catalysts were conducted to reveal the relationship between the catalyst structure and its catalytic behavior. It was found that the amount of O2 chemisorption and the intensity of CO chemisorption by IR on the catalysts first increased and then decreased with increasing calcination temperature, which was consistent with the catalytic results and the kinetic equation. This could explain the catalytic behaviors of the catalysts. For example, the highest amounts of chemisorbed O2 and CO were obtained over the Pt/TiO2 calcined at 400℃, which resulted in the highest reactivity. Such an enhancement in reactivity was probably due to the strong interaction between Pt and TiO2 induced by the calcination process.

  • 加载中
    1. [1]

      (1) Schryer, D. R.; Upchurch, B. T.; Sidney, B. D.; Brown, K. G.;Hoflund, G. B.; Herz, R. K. J. Catal. 1991, 130, 314. doi: 10.1016/0021-9517(91)90114-J

    2. [2]

      (2) Yuan, Y. Z.; Kozlova, A. P.; Asakura, K.;Wan, H. L.; Tsai, K.;Iwasawa, Y. J. Catal. 1997, 170, 191. doi: 10.1006/jcat.1997.1752

    3. [3]

      (3) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.1987, 16, 405.

    4. [4]

      (4) McClure, S. M.; odman, D.W. Chem. Phys. Lett. 2009, 469,1. doi: 10.1016/j.cplett.2008.12.066

    5. [5]

      (5) Fernández-García, M.; Martínez-Arias, A.; Salamanca, L. N.;Coronado, J. M.; Anderson, J. A.; Conesa, J. C.; Soria, J.J. Catal. 1999, 187, 474. doi: 10.1006/jcat.1999.2624

    6. [6]

      (6) Xiao, X. Y.; Lu, J. Q.; Su, X.W.; Guo, M.; Luo, M. F. ActaPhys. -Chim. Sin. 2009, 25, 561. [肖小燕, 鲁继青, 苏孝文,郭明, 罗孟飞. 物理化学学报, 2009, 25, 561.] doi: 10.3866/PKU.WHXB20090327

    7. [7]

      (7) Zhu, P. F.; Li, J.; Zuo, S. F.; Zhou, R. X. Appl. Surf. Sci. 2008,255, 2903. doi: 10.1016/j.apsusc.2008.08.033

    8. [8]

      (8) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys. -Chim.Sin. 2010, 26, 3278. [杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278.] doi: 10.3866/PKU.WHXB20101210

    9. [9]

      (9) Liu, X. S.; Lu, J. Q.; Qian, K.; Huang,W. X.; Luo, M. F.J. Rare. Earth 2009, 27, 418. doi: 10.1016/S1002-0721(08)60263-X

    10. [10]

      (10) Gardner, S. D.; Hofltmd, G. B.; Schryer, D. R.; Schryer, J.;Upchurch, B. T.; Kielin, E. J. Langmuir 1991, 7, 2135. doi: 10.1021/la00058a027

    11. [11]

      (11) Hoflund, G. B.; Gardner, S. D.; Schryer, D. R.; Upchurch, B. T.;Kielin, E. J. Appl. Catal. B 1995, 6, 117. doi: 10.1016/0926-3373(95)00010-0

    12. [12]

      (12) Gardner, S. D.; Hoflund, G. B.; Upchureh, B. T.; Kielin, E. J.;Schryer, J. J. Catal. 1991, 129, 114. doi: 10.1016/0021-9517(91)90015-V

    13. [13]

      (13) Stark, D. S.; Crccker, A.; Steward, G. J. J. Phys. E: Sci. Instrum.1983, 16, 158. doi: 10.1088/0022-3735/16/2/012

    14. [14]

      (14) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal.1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1

    15. [15]

      (15) Tauster, S. J.; Fung, S. C. J. Catal. 1978, 29, 55.

    16. [16]

      (16) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc.1978, 170, 100.

    17. [17]

      (17) Choi, Y. M.; Abernathy, H.; Chen, H. T.; Lin, M. C.; Liu, M. L.ChemPhysChem 2006, 7, 1957.

    18. [18]

      (18) Alexeev, 1. O. S.; Chin, S. Y.; Engelhard, M. H.; Ortiz-Soto, L.;Amiridis, M. D. J. Phys. Chem. B 2005, 109, 23430. doi: 10.1021/jp054888v

    19. [19]

      (19) Baker, R. T. K.; Tauster, S. J. Strong Metal Support Interactions;Dumesic, J. A. Ed.; American Chemical Society:Washington D.C. 1986; p 238.

    20. [20]

      (20) Bond, G. C.; Thompson, D. T. ld Bull. 2000, 33, 41. doi: 10.1007/BF03216579

    21. [21]

      (21) Sheintuch, M.; Schmi, J.; Lecthman, Y.; Yahav, G. Appl. Catal.1989, 49, 55. doi: 10.1016/S0166-9834(00)81421-9

    22. [22]

      (22) Boulahouache, A.; Kous, G.; Lintz, H. G.; Schulz, P. Appl.Catal. A 1992, 91, 115.

    23. [23]

      (23) Liu,W.; Flytzani-Stephanopoulos, M. J. Catal. 1995, 153, 317.

    24. [24]

      (24) Jia, A. P.; Hu, G. S.; Meng, L.; Xie, Y. L.; Lu, J. Q.; Luo, M. F.J. Catal. 2012, 289, 199. doi: 10.1016/j.jcat.2012.02.010

    25. [25]

      (25) Fogler, H. S. Elements of Chemical Reaction Engineering, 4thed.; Pearson Education Inc.: New Jersey, 2006; pp 839-842.

    26. [26]

      (26) Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepúlveda-Escribano,A.; Rodríguez-Reinoso, F. Appl. Catal. A 2005, 292, 244. doi: 10.1016/j.apcata.2005.06.005

    27. [27]

      (27) Ruppert, A. M.; Paryjczak, T. Appl. Catal. A 2007, 320, 80. doi: 10.1016/j.apcata.2006.12.019

    28. [28]

      (28) Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Anderson, A. J. J. Catal. 2004, 223, 179. doi: 10.1016/j.jcat.2004.01.019

    29. [29]

      (29) Panagiotopoulou, P.; Christodoulakis, A.; Kondarides, D. I.;Boghosian, S. J. Catal. 2006, 240, 114. doi: 10.1016/j.jcat.2006.03.012

    30. [30]

      (30) Carlsson, P. A.; Österlund, L.; Thormählen, P.; Palmqvist, A.;Fridell, E.; Jansson, J.; Skoglundh, M. J. Catal. 2004, 226, 422.doi: 10.1016/j.jcat.2004.06.009


  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(1080)
  • Abstract views(764)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return