Citation:
YE Yong-Wei, WANG Xi, ZHENG Wan-Fang, LI Mei-Chao, MA Chun-An. Electrooxidation Reaction of 3-Bromobenzoic Acid on Pt Electrode[J]. Acta Physico-Chimica Sinica,
;2013, 29(03): 553-558.
doi:
10.3866/PKU.WHXB201301101
-
Electrochemical oxidation of 3-bromobenzoic acid (3-BBA) on a Pt electrode in alkali solution was studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroscopy. The Pt electrode exhibited od performance for the electrooxidation of 3-BBA. At low oxidation potential (1000 mV), one electron was removed from the 3-BBA radical anion and the corresponding free radical was generated. A Bbromobenzene free radical cation and carbon dioxide were obtained after decarboxylation. The bromobenzene cation was then attacked by the hydroxyl radical, which was adsorbed on the anode, and the bromobenzene cation intermediate product was debrominated to form phenol. When the potential shifted to more positive values, phenol was electrooxided to produce dihydroxybenzene and benzoquinone. Maleic acid and fumaric acid were also detected as the reaction products of the ring-opening reaction.
-
-
-
[1]
(1) Scialdone, O.; Guarisco, C.; Galia, A.; Lo, C. C.; Bunce, N. J.;Konstantinov, A. D. J. Electroanal. Chem. 2010, 641, 14.doi: 10.1016/j.jelechem.2010.01.018
-
[2]
(2) Ma, C. A.; Li, M. C.; Liu, Y. N.; Xu, Y. H. Electrochim. Acta2010, 55, 3171. doi: 10.1016/j.electacta.2009.12.086
-
[3]
(3) Konstantinov, A.; Bejan, D.; Bunce, N.; Chittim, B.; McCrindle,R.; Potter, D.; Tashiro, C. J. Chemosphere 2008, 72, 1159.doi: 10.1016/j.chemosphere.2008.03.046
-
[4]
(4) Pera-Titus, M.; García-Molina, V.; Baños, M. A.; Giménez, J.;Esplugas, S. Appl. Catal. B: Environ. 2004, 47 (4), 219. doi: 10.1016/j.apcatb.2003.09.010
-
[5]
(5) Chen, G.;Wang, Z. Y.; Xia, D. G. Electrochem. Commun. 2004,6, 268. doi: 10.1016/j.elecom.2003.12.011
-
[6]
(6) Benedict, R. T.; Stapleton, H. M.; Letcher, R. J.; Mitchelmore,C. I. Chemosphere 2007, 69 (6), 987. doi: 10.1016/j.chemosphere.2007.05.010
-
[7]
(7) Zhu, Y. H.; Xu, Y. H.; Ma, H.; Zhao, F. M.; Ma, C. A. ActaPhys. -Chim. Sin. 2009, 25 (6), 1190. [朱英红, 徐颖华,马昊, 赵峰鸣, 马淳安. 物理化学学报, 2009, 25 (6), 1190.]doi: 10.3866/PKU.WHXB20090625
-
[8]
(8) Zheng, L.; Zhu, C. Z.; Xu, Y.; Lu, X.; Hou, H. Q. Resarch ofEnvironmental Sciences 2004, 17 (6), 54. [郑璐, 朱承驻,徐莺, 卢霄, 侯惠奇. 环境科学研究, 2004, 17 (6), 54.]
-
[9]
(9) Wang, Y. L.; Cai, N. C.; Huo, Y. D.; Chen, H. Acta Phys. -Chim.Sin. 2001, 17 (7), 609. [王玉玲, 蔡乃才, 霍耀东, 陈浩. 物理化学学报, 2001, 17 (7), 609.] doi: 10.3866/PKU.WHXB20010707
-
[10]
(10) Fang, L.; Huang, J.; Yu, G.;Wang, L. N. Chemosphere 2008, 71,258. doi: 10.1016/j.chemosphere.2007.09.041
-
[11]
(11) Sun, S. G.; ng, H. Petrochemical Technology 2001, 30, 806.[孙世刚, 贡辉. 石油化工, 2001, 30, 806.]
-
[12]
(12) Zhang, X. X.; Zhang, Y. X.; Jiang, J. Z. J. Mol. Struct. 2004,673, 103.
-
[13]
(13) Miki, A.; Ye, S.; Senzaki, T.; Osawa, M. J. Electroanal. Chem.2004, 563, 23. doi: 10.1016/j.jelechem.2003.09.014
-
[14]
(14) Trettenhahn, G.; Köberl, A. Electrochim. Acta 2007, 52, 2716.doi: 10.1016/j.electacta.2006.09.028
-
[15]
(15) Su, K. M.; Pan, T. Y.; Zhang, Y. L. Spectrum Analysis Method;East China University of Science and Technology Press:Shanghai, 2002; pp 106-107. [苏克曼, 潘铁英, 张玉兰. 波谱解析法. 上海: 华东理工大学出版社, 2002: 106-107.]
-
[16]
(16) Li, M. C.; Bao, D. D.; Ma, C. A. Electrochim. Acta 2011, 56,4100. doi: 10.1016/j.electacta.2011.01.115
-
[17]
(17) Sundaraganesan, N.; Meganathan, C.; Karthikeyan, B.Spectrochim. Acta A 2008, 70, 430. doi: 10.1016/j.saa.2007.12.022
-
[18]
(18) Chetty, R.; Christensen, P. A.; lding, B. T.; Scott, K. Appl.Catal. A: Gen. 2004, 271, 185. doi: 10.1016/j.apcata.2004.02.059
-
[19]
(19) Zhou, M. H.;Wu, Z. C.;Wang, D. H. Chem. J. Chin. Univ.2003, 24 (9), 1637. [周明华, 吴祖成, 汪大翚. 高等学校化学学报, 2003, 24 (9), 1637.]
-
[20]
(20) Wang, H.;Wang, J. L. Electrochim. Acta 2008, 53, 6402. doi: 10.1016/j.electacta.2008.04.080
-
[21]
(21) Li, M. C.; Bao, D. D.; Ma, C. A. Chem. J. Chin. Univ. 2011, 32 (1), 129. [李美超, 鲍丹丹, 马淳安. 高等学校化学学报,2011, 32 (1), 129.]
-
[22]
(22) Swaminathan, J.; Ramalingam, M.; Saleem, H.; Sethuraman, V.;Ameen, M. T. N. Spectrochim. Acta A 2009, 74, 1247. doi: 10.1016/j.saa.2009.09.054
-
[23]
(23) Johnson, S. K.; Houk, L. L.; Feng, J.; Houk, R. S.; Johnson, D.C. Enviro. Sci. Technol. 1999, 33, 2638. doi: 10.1021/es981045r
-
[24]
(24) Jin, G. P.; Lin, X. Q.; Ding, Y. F. J. Solid State Electrochem.2006, 10, 987. doi: 10.1007/s10008-005-0068-9
-
[25]
(25) Tong, S. P.; Ma, C. A.; Fei, H. Acta Phys. -Chim. Sin. 2007, 23 (3), 424. [童少平, 马淳安, 费会. 物理化学学报, 2007, 23 (3), 424.] doi: 10.3866/PKU.WHXB20070327
-
[1]
-
-
-
[1]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[2]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[3]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[5]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[6]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[7]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[8]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[9]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[10]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[11]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[12]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[13]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[14]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[18]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[19]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[20]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[1]
Metrics
- PDF Downloads(602)
- Abstract views(952)
- HTML views(10)