Citation:
WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao. Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2013, 29(03): 516-524.
doi:
10.3866/PKU.WHXB201301092
-
SO42? doped polyaniline (PANI) counter electrodes (CEs) on fluorine-doped tin oxide (FTO) glass substrates were fabricated, using electrochemical method under constant bias for different polymerization time. The effect of polymerization time on surface morphology, structure (such as doping level, conjugation and oxidization state), and electrocatalytic activity for I?/I3? redox reaction of the obtained PANI CEs was investigated by scanning electron microscopy (SEM), UV-Vis absorption spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). SEM results indicated that the growth of PANI films on FTO substrate occurred in two phases. Properly increasing polymerization time could increase the specific surface area of PANI CEs, affording more electrocatalytic sites for the I?/I3? redox reaction. Meanwhile, the conductivity of the PANI CEs increased gradually because of enhanced conjugation, emeraldine base (EB) structure, and SO42? doping degree. If the polymerization time was too long, however, the CE conductivity would decrease due to the formation of a thick film and superabundance of oxidized structure, resulting in an increase in the electron transfer resistance and decrease in the electrocatalytic activity of PANI CEs for I?/I3? redox reaction. Dye-sensitized solar cells (DSSCs) based on PANI CEs with a polymerization time of 300 s and D149 dye showed the best photovoltaic performance, with a solar-to-energy conversion efficiency of 5.30%. This result is approximately 88% of the efficiency of Pt CE based-solar cells, suggesting that PANI CEs polymerized with electrochemical method may replace Pt CEs in DSSCs.
-
-
-
[1]
(1) Regan, B. O.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003,4, 145. doi: 10.1016/S1389-5567(03)00026-1
-
[3]
(3) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y
-
[4]
(4) Papageorgiou, N.; Maier,W. F.; Grätzel, M. J. Electrochem.Soc. 1997, 144, 876. doi: 10.1149/1.1837502
-
[5]
(5) Papageorgiou, N. Coord. Chem. Rev. 2004, 248, 1421. doi: 10.1016/j.ccr.2004.03.028
-
[6]
(6) Wu, M. X.; Lin, X.;Wang, T. H.; Qiu, J. S.; Ma, T. L. EnergyEnviron. Sci. 2011, 4, 2308. doi: 10.1039/c1ee01059j
-
[7]
(7) Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim.Sin. 2011, 27, 2255. [李靖, 孙明轩, 张晓艳, 崔晓莉. 物理化学学报, 2011, 27, 2255.] doi: 10.3866/PKU.WHXB20110901
-
[8]
(8) Li, Z. P.; Ye, B. X.; Hu, X. D.; Ma, X. Y.; Zhang, X. P.; Deng, Y.Q. Electrochem. Commun. 2009, 11, 1768. doi: 10.1016/j.elecom.2009.07.018
-
[9]
(9) Qin, Q.; Tao, J.; Yang, Y. Synth. Met. 2010, 160, 1167. doi: 10.1016/j.synthmet.2010.03.003
-
[10]
(10) Chen, J. Z.; Li, B.; Zheng J. F.; Zhao, J. H.; Jing, H.W.; Zhu, Z.P. Electrochim. Acta 2011, 56, 4624. doi: 10.1016/j.electacta.2011.02.097
-
[11]
(11) Tian, H. N.; Yu, Z.; Hagfeldt, A.; Kloo, L.; Sun, L. C. J. Am.Chem. Soc. 2011, 133, 9413. doi: 10.1021/ja2030933
-
[12]
(12) Ahmad, S.; Yum, J. H.; Butt, H. J.; Nazeeruddin, M. K.; Grätzel,M. ChemPhysChem 2010, 11, 2814. doi: 10.1002/cphc.201000612
-
[13]
(13) Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho,W. H.;Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313. doi: 10.1016/j.jpowsour.2008.11.075
-
[14]
(14) Xia, J. B.; Chen, L.; Yanagida, S. J. Mater. Chem. 2011, 21,4644. doi: 10.1039/c0jm04116e
-
[15]
(15) Wu, J. H.; Li, Q. H.; Fan, L. Q.; Lan, Z.; Li, P. J.; Lin, J. M.;Hao, S. C. J. Power Sources 2008, 181, 172. doi: 10.1016/j.jpowsour.2008.03.029
-
[16]
(16) Sun, H. C.; Luo, Y. H.; Zhang, Y. D.; Li, D. M.; Yu, Z. X.; Li, K.X.; Meng, Q. B. J. Phys. Chem. C 2010, 114, 11673. doi: 10.1021/jp1030015
-
[17]
(17) Li, Q. H.;Wu, J. H.; Tang, Q.W.; Lan, Z.; Li, P. J.; Lin, J. M.;Fan, L. Q. Electrochem. Commun. 2008, 10, 1299. doi: 10.1016/j.elecom.2008.06.029
-
[18]
(18) Tai, Q. D.; Chen, B. L.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao,X. Z. ACS Nano 2011, 5, 3795. doi: 10.1021/nn200133g
-
[19]
(19) Zhang, J.; Hreid, T.; Li, X. X.; Guo,W.;Wang, L. P.; Shi, X. T.;Su, H. Q.; Yuan, Z. B. Electrochim. Acta 2010, 55, 3664. doi: 10.1016/j.electacta.2010.01.115
-
[20]
(20) Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Prog. Polym.Sci. 2009, 34, 783. doi: 10.1016/j.progpolymsci.2009.04.003
-
[21]
(21) MacDiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Epstein, A. J.Synth. Met. 1987, 18, 286.
-
[22]
(22) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.;Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am.Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063
-
[23]
(23) Stafström, S.; Sjögren, B.; Brédas, J. L. Synth. Met. 1989, 29,E219.
-
[24]
(24) Xu, Y. T.; Dai, L. Z.;Wu, H. H. Journal of Xiamen University2001, 40, 1073. [许一婷, 戴李宗, 吴辉煌. 厦门大学学报,2001, 40, 1073.]
-
[25]
(25) Huang,W. S.; MacDiarmid, A. G. Polymer 1993, 34, 1833. doi: 10.1016/0032-3861(93)90424-9
-
[26]
(26) Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263. doi: 10.1016/0379-6779(89)90770-4
-
[27]
(27) Yin,W.; Ruckenstein, E. Synth. Met. 2000, 108, 39. doi: 10.1016/S0379-6779(99)00179-4
-
[28]
(28) Shreepathi, S.; Holze, R. Chem. Mater. 2005, 17, 4078. doi: 10.1021/cm050117s
-
[29]
(29) Qin, Q. Preparation and Properties of Polyaniline Electrolyteand Counter Electrode for DSSCs. Ph.D. Dissertation, NanjingUniversity of Aeronautics and Astronautics, Nanjing, 2010.[秦琦. 染料敏化太阳能电池用聚苯胺电解质及对电极的制备与性能研究[D]. 南京: 南京航空航天大学, 2010.]
-
[30]
(30) Saito, Y.; Kubo,W.; Kitamura, T.;Wada, Y.; Yanagida, S.J. Photochem. Photobiol. A: Chem. 2004, 164, 153. doi: 10.1016/j.jphotochem.2003.11.017
-
[31]
(31) Tang, H.; Kitani, A.; Shiotani, M. J. Appl. Electrochem. 1996,26, 36. doi: 10.1007/BF00248186
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[3]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[4]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[5]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[6]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[7]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[8]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[9]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[10]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[13]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[14]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[15]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[18]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[19]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(1045)
- Abstract views(1335)
- HTML views(48)